
www.manaraa.com

openHTML: Assessing Barriers and Designing Tools for

Learning Web Development

A Thesis

Submitted to the Faculty

of

Drexel University

by

Thomas H. Park

in partial fulfillment of the

requirements for the degree

of

Doctor of Philosophy

December 2014

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3667881

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3667881

www.manaraa.com

© Copyright 2014

Thomas H. Park. All Rights Reserved.

www.manaraa.com

 ii

Acknowledgements

My deepest gratitude to my advisor, Andrea Forte, who has been a source of
inspiration and guidance from our very first lunch at the pizza shop years ago.
The greatest lessons I’ve learned from her go beyond research methods and
study designs, on how to cross disciplines, bridge communities, and set the
conditions to help others succeed.

I would like to thank my committee for their thoughtful feedback and
encouragement. To Brian Dorn, who has always been generous with his time
and expertise, and with whom I’ve been fortunate to collaborate on multiple
occasions. I have also benefited greatly from the wisdom offered by Mark
Guzdial, Greg Hislop, and Jennifer Rode, and the unique perspectives they
bring to programming and computing education.

I am grateful to Susan Wiedenbeck and Margaret Burnett, who mentored me
in the ways of research during my early years at Drexel, and to the National
Science Foundation for their support of this work. Also, a shout-out to all the
wonderful designers, developers, and researchers at the Mozilla Foundation.

I would like to acknowledge my fellow students who have accompanied me
on this journey. To Warren Allen, Haozhen Zhao, Rachel Magee, Diana
Kusunoki, Ankur Saxena, Swathi Jagannath, Heather Willever-Farr, Naz
Andalibi, Jill Cao, Stephen Oney, Bernie Zang, and countless others, thank
you for the camaraderie and the delightful discussions.

Finally, thanks to my friends and family — most of all, to my mom and dad
for their unwavering love, and my wife Amy for supporting me every step of
the way.

www.manaraa.com

 iii

Table of Contents

Acknowledgements .. ii

Table of Contents .. iii

List of Tables .. vii

List of Figures ... ix

Abstract .. x

Chapter 1 Introduction ... 1

1.1. Foundations of Computational Literacy ... 3

1.2. The Case for Basic Web Development .. 5

1.3. Research Questions ... 8

1.4. Methodology .. 9

1.5. Structure of the Dissertation ... 14

Chapter 2 Related Literature ... 18

2.1. Teaching and Learning Web Development 18

2.2. Programming Errors and Misconceptions 22

2.3. Fundamental Computing Concepts .. 27

2.4. Tools for Learning HTML and CSS ... 34

Chapter 3 Identifying Learning Barriers in a Web Development Course . 44

3.1. Methods ... 46

3.1.1. Data Collection .. 46

3.1.2. Data Analysis .. 48

www.manaraa.com

 iv

3.2. Findings ... 50

3.2.1. Types of Barriers ... 50

3.2.2. Coding Barriers .. 56

3.2.3. Computational Concepts .. 61

3.3. Discussion ... 65

3.3.1. Authenticity versus Complexity .. 65

3.3.2. The Role of JavaScript .. 66

3.3.3. Connecting the Web to Computing Education 67

3.3.4. Limitations .. 68

3.4. Summary .. 68

Chapter 4 Designing the openHTML Editor ... 71

4.1. Design Principles ... 72

4.1.1. Principle #1: Abstract Away the Infrastructure 72

4.1.2. Principle #2: Focus Learning on the Code ... 73

4.1.3. Principle #3: Facilitate Code Sharing ... 75

4.2. Implementation ... 76

4.2.1. Web-Based .. 76

4.2.2. Minimal Interface .. 77

4.2.3. Saving Revisions .. 79

4.2.4. Limitations .. 79

4.3. Pilot Study ... 80

4.3.1. Demographics .. 81

4.3.2. Activities ... 82

4.3.3. Findings ... 82

www.manaraa.com

 v

4.4. Summary .. 83

Chapter 5 Intention-Based Analysis of Errors in HTML and CSS 85

5.1. Methods ... 86

5.1.1. Participants ... 87

5.1.2. Protocol ... 88

5.1.3. Tasks .. 89

5.1.4. Data Analysis .. 90

5.2. Findings ... 94

5.2.1. Overview of Errors ... 94

5.2.2. Skill-Based Errors .. 96

5.2.3. Rule-Based Errors ... 98

5.2.4. Knowledge-Based Errors ... 102

5.3. Discussion .. 105

5.3.1. Triaging Errors .. 105

5.3.2. Feedback that Harms and Helps Understanding 107

5.3.3. Interpreting Errors in Natural Settings .. 109

5.4. Summary ... 110

Chapter 6 Analysis of Syntax Errors in a Web Development Course 113

6.1. Methods .. 115

6.1.1. Course Description ... 115

6.1.2. Iterating on openHTML .. 118

6.1.3. Study Design .. 121

6.1.4. Participants ... 124

6.2. Findings .. 128

www.manaraa.com

 vi

6.2.1. Unresolved Errors ... 128

6.2.2. Resolving Errors .. 137

6.3. Discussion .. 142

6.3.1. Mastering Syntax through Practice ... 142

6.3.2. Learning through Validation .. 144

6.3.3. Limitations .. 146

6.4. Summary ... 149

Chapter 7 Conclusion .. 151

7.1. Contributions .. 151

7.1.1. Learning Barriers in a Web Development Course 151

7.1.2. Common Errors in HTML and CSS .. 152

7.1.3. The Design of a Web Editor for Learners .. 155

7.1.4. Computational Literacy in Basic Web Development 156

7.2. Future Directions ... 158

7.2.1. Learning Effects in Web Development ... 158

7.2.2. Informal Learning at a Large Scale ... 160

7.2.3. Improving Teaching and Learning Tools .. 162

7.3. Parting Words ... 163

References ... 165

www.manaraa.com

 vii

List of Tables

Table 3-1: The weekly schedule of topics for the course. 47	

Table 3-2: Codes for categories of challenges. .. 48	

Table 3-3: Codes for types of coding challenges. ... 49	

Table 3-4: Help seeking by type. ... 51	

Table 3-5: Coding challenges by topic. .. 57	

Table 4-1: Demographics of the workshop participants. 81	

Table 4-2: The workshop agenda. ... 82	

Table 5-1: Participants gender, age, profession, and prior experience with
HTML, CSS, and programming languages. Prior experience is self-
reported on a scale of 0 (none) to 3 (expert). .. 88	

Table 5-2: The coding tasks. .. 90	

Table 5-3: The coding scheme for errors. ... 91	

Table 5-4: Heuristics used to classify errors as occurring at the skill, rule, or
knowledge-based levels of performance. .. 93	

Table 5-5: Task completion time in minutes and error count for each task. ... 94	

Table 5-6: Skill-based error types. ... 98	

Table 5-7: Rule-based error types. .. 100	

Table 5-8: Knowledge-based error types. .. 105	

Table 6-1: The weekly schedule of topics and assessments for the course. ... 116	

Table 6-2: A description of the activities used in this study. 118	

Table 6-3: Demographic data for the interview participants. 125	

Table 6-4: Error types comprising unresolved errors by frequency and
prevalence. ... 129	

www.manaraa.com

 viii

Table 6-5: The number of nesting errors by assignment. The proportion of
overall errors is given in parentheses. ... 132	

Table 6-6: A count of the HTML elements mentioned in error messages
related to nesting. ... 132	

Table 6-7: The number of parent-child errors by assignment. The proportion
of overall errors is given in parentheses. .. 135	

Table 6-8: The most common HTML elements mentioned in error messages
related to parent-child rules. Parent elements are listed horizontally and
child elements vertically. .. 135	

Table 6-9: Types of errors found during validation. Frequency is the number
of instances of an error, prevalence is the number and percentage of
students that made an error at least once, recurrence is the median
number of validations that an error lasted, and resolution is the number
and percentage of instances that were eventually resolved. 139	

www.manaraa.com

 ix

List of Figures

Figure 1-1: A timeline of the research and design described in the dissertation.
 ... 16	

Figure 2-1: Fundamental ideas of CS as proposed by Schwill [1994]. 29	

Figure 2-2: Fundamental programming topics with expert ratings for
importance and difficulty as reported by Goldman et al. [2008]. 31	

Figure 2-3: TextMate, a code editor with syntax highlighting and bracket
matching. ... 36	

Figure 2-4: Dreamweaver, a web development IDE, with code pane at top and
WYSIWYG pane at bottom. .. 36	

Figure 2-5: Virtual Lab, a web-based environment for learning HTML. 40	

Figure 2-6: WebCrystal, a tool that allows users to learn how to recreate
elements on a web page using HTML and CSS. ... 42	

Figure 3-1: A week-by-week profile of help seeking for each category. 51	

Figure 4-1: The edit mode of openHTML, with a CSS pane, HTML pane, and
live preview from left to right. Several other options are provided in the
toolbar at top. .. 77	

Figure 4-2: The page list mode of openHTML. A list of web pages is shown
on the left, and a preview of the selected web page on the right. The
same web page has been expanded to show all previous revisions. 78	

Figure 5-1: Error count and resolution for skill-based, rule-based, and
knowledge-based errors. .. 95	

Figure 6-1: The openHTML replayer playing back a previously logged coding
session. ... 120	

Figure 6-2: The openHTML validator feature, with an example error message.
 ... 121	

Figure 6-3: The number of unresolved errors per student. Students from Fall
2012 are in red and students from Spring 2013 in blue. All four students
without any unresolved errors were from Spring 2013. 129	

www.manaraa.com

 x

Abstract

openHTML: Assessing Barriers and Designing Tools for

Learning Web Development

Thomas H. Park

Andrea Forte, Ph.D.

In this dissertation, I argue that society increasingly recognizes the value of

widespread computational literacy and that one of the most common ways

that people are exposed to creative computing today is through web

development. Prior research has investigated how beginners learn a wide range

of programming languages in a variety of domains, from computer science

majors taking introductory programming courses to end-user developers

maintaining spreadsheets. Yet, surprisingly little is known about the

experiences people have learning web development. What barriers do

beginners face when authoring their first web pages? What mistakes do they

commonly make when writing HTML and CSS? What are the computational

skills and concepts with which they engage? How can tools and practices be

designed to support these activities?

www.manaraa.com

 xi

Through a series of studies, interleaved with the iterative design of an

experimental web editor for novices called openHTML, this dissertation aims

to fill this gap in the literature and address these questions. In drawing

connections between my findings and the existing computing education

literature, my goal is to attain a deeper understanding of the skills and

concepts at play when beginners learn web development, and to broaden

notions about how people can develop computational literacy.

This dissertation makes the following contributions:

• An account of the barriers students face in an introductory web

development course, contextualizing difficulties with learning to read

and write code within the broad activity of web development.

• The implementation of a web editor called openHTML, which has

been designed to support learners by mitigating non-coding aspects of

web development so that they can attend to learning HTML and CSS.

• A detailed taxonomy of errors people make when writing HTML and

CSS to construct simple web pages, derived from an intention-based

analysis.

• A fine-grained analysis of HTML and CSS syntax errors students

make in the initial weeks of a web development course, how they

resolve them, and the role validation plays in these outcomes.

www.manaraa.com

 xii

• Evidence for basic web development as a rich activity involving

numerous skills and concepts that can support foundational

computational literacy.

www.manaraa.com

 1

Chapter 1
Introduction

As the role of computing in society grows, so grows the importance of a

computationally literate citizenry. Just as traditional literacy—that is the

fundamental skills needed to read, write, and think critically about written

text—has transformed society, giving individuals access to vast sources of

information and modes of communication that empower them “to achieve

their goals, to develop their knowledge and potential, and to participate fully

in their community and wider society”, forming a new “basis for positive

social transformation, justice, and personal and collective freedom”

[UNESCO 2004], computational literacy has the potential to do the same.

Computational literacy is defined as “a socially widespread patterned

deployment of skills and capabilities in a context of material support… to

achieve valued intellectual ends” [diSessa 2001], using computation as its

material basis. diSessa contrasts the abilities needed to create artifacts through

computational media such as a programming language with computer

literacy’s “casual familiarity” with spreadsheets and word processors. Though

end-user applications such as word processors and mobile apps can be used to

produce expressive artifacts, he stresses that the goal of computational literacy

is “not only to control a computational medium, but to create genuinely new

www.manaraa.com

 2

representations”, which will have “a penetration and depth of influence

comparable to what we have already experienced in coming to achieve a mass,

text-based literacy”. The alternative threatens to be a monopoly held by

“highly trained computing professionals acting as ‘high-tech scribes’” [Fischer

2004].

Educational pioneers like Alan Kay [Kay and Goldberg 1977] and

Seymour Papert [Papert 1993] have long been inspired by the vision of a

world in which every person wields computation as a tool for personal

expression and enrichment, civic action, and creativity, making new things

humanly possible [Fischer 2004]. Today, this vision is a feature of national

policy. The America COMPETES (Creating Opportunities to Meaningfully

Promote Excellence in Technology, Education, and Science) Act identified the

promotion of technological and scientific literacies among all Americans as a

top priority in establishing a more competitive workforce and stimulating U.S.

creativity and innovation [Congress 2007].

Despite its promises, we are a long way from achieving widespread

computational literacy. A 2010 study by the Association for Computing

Machinery (ACM) and Computer Science Teachers Association (CSTA) finds

that “paradoxically, as the role and significance of computing has increased in

society and the economy, quality computer science education is being pushed

out of the K–12 education system in the U.S.” The report concludes that K-

12 education in most states is “focused almost exclusively on skill-based

www.manaraa.com

 3

aspects of computing... and have few standards on the conceptual aspects of

computer science that lay the foundation for innovation and deeper study in

the field” [ACM 2010].

At the university level, the rate of students enrolling in computing-related

disciplines has not consistently kept pace with projected job growth in these

areas [Denning and McGettrick 2005]. Low participation among women and

minorities has been a particular source of concern [Camp 1997; Fisher and

Margolis 2002]. Retention rates are equally dismal, with up to 40 percent of CS

students choosing another major by the end of their first year [Beaubouef and

Mason 2005]. After their first year, a significant number of CS students are

still unable to write or trace basic programs [McCracken et al. 2001; Lister et

al. 2004]. Incoming CS majors often lack an effective model of computers,

presenting “a serious obstacle” when learning to program [Ben-Ari 1998].

1.1. Foundations of Computational Literacy
When it comes to traditional literacy, reading attitudes and skills develop even

before children are able to make sense of written texts [Holdaway 1979].

Holdaway explains that frequent positive exposures to storybooks in

childhood lay the foundation for continued engagement with written texts and

the development of increasingly sophisticated literacy skills. In mathematics

too, students experience the concept of quantity prior to receiving formal

instruction in arithmetic: “they have had to deal with operations of division,

addition, subtraction, and determination of size” [Vygotsky 1978].

www.manaraa.com

 4

Likewise, I argue that the road to computational literacy begins long before

students take their first programming course. Through a variety of

experiences, students learn about the precision required by computers. They

are exposed to the ways data is represented and programs are written so that

they can be interpreted by computers. They may even author programs

themselves, learning to juggle the exacting syntax of formal languages with

higher-level concerns about logic and design.

For the most part, these foundational experiences are informal and

serendipitous, occurring outside of formal instruction. Lu and Fletcher draw

parallels between mathematics and computing education, analogizing that

programming is to computer science as proof construction is to mathematics;

while primary and secondary education build a foundation of mathematics

that leads up to proof construction, such a foundation is absent for college

students taking their first programming course [Lu and Fletcher 2009].

Earlier computing experiences can have a substantial impact on students’

subsequent perceptions, attitudes, and habits toward computing. For instance,

an analysis of the computing biographies of college students [Schulte and

Knobelsdorf 2007] found that CS non-majors tend to view computers as a

tool for work and leisure, using them for office applications and web surfing.

They associate computing-related problems with negative emotions like

embarrassment and helplessness. Conversely, CS majors view computers as a

www.manaraa.com

 5

tool they can reshape, and engage them in playful exploration and problem

solving. A follow-up study by Ko [Ko 2009] concludes:

...No one positive experience with code was enough to keep a

person engaged with coding throughout their lifetime; instead, it

required persistent, cumulative positive exposure... This

suggests that not only will children need positive first

encounters with code at a young age, but they will need

additional, and different experiences throughout middle school,

high school, and college.

1.2. The Case for Basic Web Development
I propose that basic web development, constructing web pages by authoring

code in HTML and CSS, can play a pivotal role in developing elementary

computational literacy. Basic web development can serve to broaden the

diversity of people who engage in computation and deepen their

understanding by relating it to everyday experiences with the web.

Web development is a broad term with many meanings. Loosely defined, it

is the creation of software for the web, ranging from a single static web page

to a complex web-based application, and any related activities that support this

endeavor. Web development can involve many activities including client-side

and server-side programming, database management, server administration,

www.manaraa.com

 6

graphic design, and content development. Basic web development is but one

facet of this activity, but one that is fundamental to building web pages.

While traditional programming languages are a more expressive form of

computation and have been the main focus of computational literacy efforts,

they are not the only activity that can fill this role. A report by the National

Research Council on computer literacy [NRC 1999] notes that literacy

curricula have needlessly focused on conventional programming languages;

the report goes on to acknowledge activities like the sophisticated use of

spreadsheets [Nardi 1993] and even the troubleshooting of technical problems

as programming activities. In a similar vein, the mail merge feature of word

processors has been used to introduce students to key computational concepts

like conditionals and branching [Popyack and Herrmann 1993], while

programming has also been investigated in the context of domestic appliances

like ovens and video recorders [Rode et al. 2004]. Computer science concepts

have even been taught through activities requiring no technology at all [Taub

et al. 2009].

In much the same way, basic web development involves many aspects of

programming and can provide a contextualized, “low floor” basis for learning

about computation. And as a form of programming, even markup languages

possess many of its pitfalls: “As with the use of JavaScript, even the

abstractions of HTML provide the opportunity for syntax errors, runtime

errors, or bugs in the form of unintended or exceptional behaviors” [Blackwell

www.manaraa.com

 7

2002]. Research has also found that novice and intermediate users have

“patchy” models of the web [Sheeran et al. 2002], and that students have

trouble with hypertext and link creation [Désilets et al. 2005] and composing

absolute and relative tree paths when referencing resources like images and

web pages [Miller et al. 2010].

Beyond the content of web development, its social significance offers

value as a context for learning about computation. Papert coined the term

constructionism when arguing that learning “happens especially felicitously in

a context where the learner is consciously engaged in constructing a public

entity, whether it’s a sand castle on the beach or a theory of the universe”

[Papert and Harel 1991]. He outlined three design principles that engage

newcomers and applied them to the development of Logo, a programming

environment that enables students to instruct a “turtle” cursor to draw

graphics:

• Continuity: The mathematics must be continuous with well-

established personal knowledge from which it can inherit a sense of

warmth and value as well as “cognitive competence.”

• Power: It must empower the learner to perform personally meaningful

projects that could not be done without it.

• Cultural Resonance: The topic must make sense in terms of a larger

social context.

www.manaraa.com

 8

The qualities laid out by Papert are embodied in the construction of web

pages. First, the web is exceedingly familiar to students, establishing continuity

with their existing knowledge. Students learning web development are likely to

have had meaningful experiences with the web – as of 2009, 93 percent of

Americans aged 12 to 17 and 74 percent of adults have been online [Lenhart

et al. 2010]. Second, web development empowers learners with the ability to

create of visual and interactive artifacts. Finally, web development holds

cultural resonance. Web pages are inherently social, meant to be published

online and linked to one another. Already, many people learn web

development in formal and informal contexts, including members of groups

that are traditionally underrepresented in computer science [Rosson et al.

2004; Dorn and Guzdial 2010a]. Furthermore, the boundaries between

learning and practice frequently blur as they learn in pursuit of practical end-

goals like making a personal homepage or a website for a small business.

Learning can be most effective when situated within authentic practice in this

way [Lave and Wenger 1991].

1.3. Research Questions
Despite the prevalence of basic web development in practice and its potential

as a vehicle for computational literacy, little research has examined the

difficulties beginners face when learning HTML and CSS, the computational

concepts and skills that they engage with, and how these critical early

moments can be turned into more sustained engagement with computation.

www.manaraa.com

 9

The overarching goal of this dissertation is to investigate the largely

unexplored terrain of difficulties beginners have when learning basic web

development. Specifically, the studies presented in this dissertation pose the

following research questions:

RQ1. What are the barriers students encounter in an introductory web

development course?

RQ2. What types of errors do beginners commonly make when using

HTML and CSS?

RQ3. What computational concepts and skills do beginners engage

with when learning HTML and CSS?

RQ4. How can a web editor be designed to support beginners in

learning HTML and CSS?

1.4. Methodology
I address these research questions through design-based research (DBR), a

methodological approach in the learning sciences that acknowledges the

essential complexity within which learning occurs [A. L. Brown 1992; Collins

1992]. In DBR, research alternates between the design of sociotechnical

interventions, guided by theoretical principles derived from earlier research,

and evaluation of their effects on teaching and learning within the “blooming,

buzzing confusion” of real-life settings [Barab and Squire 2004]. DBR has two

www.manaraa.com

 10

principal qualities: its embraces the situated nature of learning, and it attempts

to transform learning through innovative interventions.

First, DBR recognizes the situated nature of learning [J. S. Brown et al.

1989] and addresses it head-on by studying learners in their natural settings.

Learning and the context in which it happens are considered inseparable: from

the interplay between teacher, student, curriculum, tools, and the activities,

policies, cultures in which they are embedded, emerge interactions that play an

instrumental role in how learners learn. This approach contrasts with the

tradition of laboratory experiments, where variables are strictly controlled and

learning outcomes narrowly measured. Due to resource limitations and the

ethical questions that arise, it is rarely possible in educational settings to

control confounding factors and carefully select participants. Here, DBR errs

on the side of ecological validity by studying learners within these settings, at

the cost of precise experimental results.

Second, DBR has a transformative agenda. Concomitant with the goal of

advancing theory is the improvement of practice, driven by designing

sociotechnical interventions and evaluating their impacts. Collins [Collins et al.

2004] draws connections between such educational interventions and

“artificial sciences” like aeronautics engineering and artificial intelligence

[Simon 1996]. In contrast to natural sciences such as physics, biology, and

anthropology that strive to develop explanatory theories for observed

phenomena, DBR investigates how designed systems affect teaching and

www.manaraa.com

 11

learning, and seeks to play an active role in positively influencing these

outcomes. Typically, DBR takes an iterative form of progressive refinement,

alternating between the design of interventions, deployment in natural

settings, and evaluation of outcomes in order to generate new theories and

inform the next round of design. In the present research, I report on the

design and deployment of openHTML, a web editor that aims to support

learning HTML and CSS.

DBR is an overarching approach and does not prescribe specific research

methods however. Challenges stemming from the quantity and complexity of

the real-world data that is generated by DBR often calls for a blend of

ethnographic and quantitative approaches. Additionally, learning is a dynamic

process, but cannot easily be measured. One cannot simply peer inside the

minds of participants and observe learning as it occurs, but must rather adopt

a variety of methods for externalizing it or otherwise finding useful proxies for

it. In this dissertation, the methods I rely on for this purpose include thematic

analysis [Braun and Clarke 2006] of forum content, field studies [Corbin and

Strauss 1998], verbal protocol analysis of think-aloud tasks in a laboratory

[Ericsson and Simon 1993; Chi 1997], and log analysis [Guzdial 1993],

complemented with surveys and interviews. I provide a detailed discussion of

these methods in later chapters.

Despite the diversity of these methods, they are well integrated within the

DBR approach. Beginning with the web workshop, the studies deploy

www.manaraa.com

 12

progressive versions of openHTML, an experimental web editor for

beginners, and each study informs the next round of design. The methods as

carried out reflect the situated nature of learning to as great an extent as the

circumstances allowed, culminating with the study of students in a live web

development course.

Although a laboratory-based study may not fit squarely with DBR and

capture the full complexity and richness of how people practice web

development in the real world, such controlled studies can serve a

complementary purpose, exploring specific phenomena and informing more

complex, higher-stakes interventions [Gilmore 1990; A. L. Brown 1992]. For

instance, a researcher may identify interesting behaviors in a lab study, thereby

becoming sensitized to look for similar patterns in the noisiness of a live

classroom. In my laboratory study however, I nevertheless preserved the

online context of web development practice by allowing participants to

conduct web searches to help them complete tasks, which previous research

has shown to comprise a major component of web development learning and

workflow [Rosson et al. 2004; Dorn and Guzdial 2010b].

Typically in DBR, multiple rounds of research are conducted in the same

organizational setting, giving rise to an increasingly refined understanding of

the context and the co-design of system and environment. The research

presented in this dissertation diverges from this convention, shifting focus

from graduate students of library science in an online course, to children in an

www.manaraa.com

 13

after-school workshop, to undergraduate students in a face-to-face course.

This was due to the evolving nature of the research, as well as limitations in

the access to participants. Nonetheless, broadening the populations under

study also confers benefits given the sparseness of prior research on how

beginners learn HTML and CSS. Each group pushed the bounds of learning

web development in different ways, from exploring the barriers faced by non-

technical library science students, to evaluating openHTML and workshop

activities for young elementary students, to capturing the range of errors made

by participants possessing diverse backgrounds, to investigating the coding

behavior of undergraduate students in their first substantial engagements with

HTML and CSS.

I note a final commonality in the primary data sources used in my studies.

While retrospective methods such as interviews are invaluable for capturing

the perspectives and sensemaking of participants, especially at the time of the

data collection, memory is notoriously fallible and recalling the order of events

that occurred weeks or months ago can be problematic. This is perhaps even

more the case for novices, such as web development students, who may have

a limited ability to introspect or accurately recall details about their code

[Adelson 1981; McKeithen et al. 1981]. Furthermore, what the learner failed to

notice or does not fully understand is often precisely what is of greatest

interest. Therefore, in all of my studies I have attempted to triangulate

retrospective data, such as interviews and surveys about past experiences, with

www.manaraa.com

 14

activity data such as forum posts, field notes, video recordings, and activity

logs that are generated contemporaneous to the act of learning and practicing

web development.

1.5. Structure of the Dissertation
This dissertation reports on three studies that investigate different aspects of

learning and practicing web development, as well as the iterative design of

openHTML.

In the first study, I analyzed the help forums of a web development course

offered to library science students. I identified five broad types of barriers that

students sought help for: administration, technology, code, design, and

content. Further analysis revealed that the majority of code barriers related to

many basic aspects of HTML and CSS, warranting a deeper investigation of

the difficulties beginners have with these languages.

Guided by insights from this study, I designed and developed the initial

version of openHTML, namely abstracting away technological issues such as

installing and configuring software, facilitating aspects of administration such

as sharing code, and positioning code as the focal point of the interface. An

implementation of openHTML was then pilot-tested in an after-school

workshop for elementary students, in order to assess its robustness and

usability.

In the second study, I used openHTML to conduct a laboratory-based

study that examined the syntactic and semantic errors participants made when

www.manaraa.com

 15

constructing web pages using HTML and CSS. Applying a framework of

human behavior [Rasmussen 1983], I classified a wide range of common

errors according to their cognitive causes. Additionally, I found that

approximately 70 percent of errors involved invalid syntax, supporting the

viability of syntax errors as a window into the difficulties that beginners have

with HTML and CSS.

In the final study, I turned back to a live web development course,

conducting a fine-grained analysis of the syntax errors undergraduate students

make with HTML and CSS during the initial weeks of the course. Two terms

of this course were preceded by iterations on the design of openHTML to

support its deployment in formal learning contexts. Analysis revealed that two

computing concepts, nesting and parent-child rules, underlay the majority of

these errors, and that validation was an effective practice for resolving them in

most instances.

A timeline illustrating the studies, in terms of data collection and analysis,

and how each study informed subsequent rounds of research and design, is

given in Figure 1-1.

www.manaraa.com

 16

Figure 1-1: A timeline of the research and design described in the dissertation.

The remainder of this document is organized in the following chapters:

• Chapter 2 reviews related literature from the domains of CS education

and human-computer interaction.

• Chapter 3 presents the first study, which reports on learning barriers

found in an online web development course. This study provides context

www.manaraa.com

 17

for challenges specific to coding in HTML and CSS, and is based on work

published in [Park and Wiedenbeck 2011].

• Chapter 4 describes the initial design and implementation of openHTML,

as well as a pilot study evaluating it in an after-school web workshop. The

design of openHTML was reported in [Park, Saxena, Jagannath,

Wiedenbeck and Forte 2013b] and the web workshop in [Park, Magee, et

al. 2013a].

• Chapter 5 details the second study, a laboratory-based study of common

errors people make when writing HTML and CSS. This study was

published in [Park, Saxena, Jagannath, Wiedenbeck and Forte 2013c].

• Chapter 6 presents the third study, where I deployed openHTML in a

web development course and investigated the syntax errors that students

made in the initial weeks of the course. These findings will be reported in

[Park et al. in press].

• Lastly, Chapter 7 summarizes the contributions of this dissertation and

discusses future research directions.

www.manaraa.com

 18

Chapter 2
Related Literature

This chapter provides an overview of prior research related to this

dissertation. I draw from a rich body of computing education literature on

how people learn to program, as well as the relatively sparse research on

learning web development. Each section corresponds to one of my four

research questions. I start with studies of teaching and learning web

development in formal and informal contexts. Then I briefly summarize

research on the errors novices make and the misconceptions they have when

learning to program. I continue with efforts to define the concepts that are

fundamental to computational literacy and the computer science discipline.

Finally, I conclude by discussing work on designing programming

environments to support web development, particularly with respect to

helping beginners overcome barriers and resolve errors.

2.1. Teaching and Learning Web Development
The computing education literature describes numerous examples of courses

that have used web development as a context to teach programming and other

computational concepts. Many of these studies have focused on the challenges

www.manaraa.com

 19

faced by educators rather than students, and are limited to anecdotal data and

informal observations when reporting on student experiences.

The earliest accounts focused on curricular challenges stemming from the

broad array of technologies involved in web development and their rapid

evolution [Lim 1998; Walker and Browne 1999]. Although course materials

required significant overhaul after only a few months due to the “web pace” at

which technologies advanced, researchers offered anecdotal support for a

breadth-first approach that surveys web development. Based on the personal

observations, Lim [Lim 1998] noted that CS students met the intended

outcomes of his course and were enthusiastic about their assignments. As

evidence for the efficacy of this approach, Walker and Brown [Walker and

Browne 1999] reported positive feedback from a student after the course and

several cases where students went on to pursue web development

professionally. Web development courses aimed at non-computing majors

have similarly been evaluated based on teacher observations, indicating high

levels of engagement and the potential for difficulties among non-majors

transitioning from HTML to JavaScript [Mercuri et al. 1998; Reed 2001].

Klassner [Klassner 2000] describes a web development course that tries to

obviate the need for keeping pace with the state of the art by emphasizing

functionality rather than the particulars of implementation. He evaluated this

approach by surveying students at the midpoint and end of the course, asking

questions such as “What elements of the course do you find most useful?”

www.manaraa.com

 20

and “What elements would you want to see changed?” Among his findings

were that students were evenly divided between whether a server-side

assignment in the first half of the course was at an appropriate level or too

ambitious, and that students found the unit on compression techniques too

theoretical and overly removed from real-world applicability.

 Treu [Treu 2002] adopted a seminar format in which students worked

collaboratively to complete a project, selecting topics for themselves as the

need arose and teaching them to the rest of the class. In addition to informal

observations about the enthusiasm of students in the class, he administered a

quantitative survey that asked students to rate how much they learned in the

course and the effectiveness of the case study approach. Students rated these

numbers highly, although it is difficult to draw strong conclusions given the

lack of a comparison point. Sridharan [Sridharan 2004] described a web

development course that utilized a strategy of program completion in which

students are provided with partial programs and tasked with completing the

missing portions, making the switch between multiple forms of technology

manageable compared to a program generation strategy in which students are

expected to build programs from scratch. Like Treu, he assessed this approach

by analyzing course evaluations and found that students also rated nearly all

aspects of the course highly. Gurwitz [Gurwitz 1998] provided the most

detailed findings based on a post-course survey. Students once again

responded positively on the whole, with criticisms centered on acute

www.manaraa.com

 21

administrative problems such as unreliable Internet access and inconvenient

computer lab locations.

Studies have also explored the backgrounds and practices of experienced

web developers. Interviews with informal web developers who lack formal

training or responsibilities but nonetheless find themselves maintaining

websites [Rosson et al. 2004] revealed that less expert developers lacked a

systematic view of web development and instead developed “pockets of

expertise” as they encountered and learned to resolve specific issues. Studies

of professional web developers [Dorn and Guzdial 2010a; Dorn and Guzdial

2010b] raised similar issues due to their lack of formal computing education.

In the case of both hobbyist and professional web developers, learning was

opportunistic in nature and relied heavily on online resources found through

web searches, including documentation and code examples.

In an introductory web development course, students can encounter many

new aspects of computation, yet there has been little research on their

experiences. Given the different circumstances in which experienced

developers and students of a structured web development course are

operating, the barriers they face are likely to differ considerably. While case

studies of web development courses offer some insight, most have assessed

their approaches using informal observations and anecdotal data. End-of-

course surveys and evaluations have also identified potential barriers to

learning web development, but these findings are relatively coarse and focused

www.manaraa.com

 22

on only the most acute problems due to their retrospective nature. An

improved understanding of the barriers students face in their first web

development course serves as the first step in addressing them.

2.2. Programming Errors and Misconceptions
In computing education research, the errors students make and the

misconceptions they hold about programming have long served as a window

into their state of understanding [Smith et al. 1993], informing teaching

practice and tool design. A brief review of studies representative of this work

illustrates potential insights that might be gained from a similar study of

HTML and CSS.

The path to programming expertise is a long one [Linn and Dalbey 1985],

and the literature makes clear that novices have significant difficulties learning

to program on multiples levels [duBoulay 1986]. A series of studies have

demonstrated that after a year or more of study, CS students continue to fall

short of expected outcomes in their ability to trace [Lister et al. 2004], design

[Loftus et al. 2011], and write [Kurland et al. 1986; McCracken et al. 2001]

computer programs. Students often enter their first programming course with

an impoverished model of the computer [Ben-Ari 1998].

Studies have found that the distribution of errors can be roughly

characterized as a power law distribution, where a few types of errors are

responsible for the majority of instances. One of the earliest and most

extensive classifications of programming errors comes from a study of 73

www.manaraa.com

 23

students learning Cobol [Litecky and Davis 1976]. Litecky and Davis reported

that 20 percent of error types were responsible for 80 percent of the errors

students made, advocating for teachers to focus on these most common errors

when teaching students.

One way that the nature of programming errors has been examined is by

classifying them as relating to syntax, semantics, or logic and design. Youngs

[Youngs 1974] assigned programming tasks to students and professionals,

comparing the errors they made in terms of the statement type (e.g.,

assignment, input/output, iteration), the specific manifestation of the error

(e.g., formatting, omission, illegal operation), and the depth of understanding

required to correct it (e.g., syntax, semantic, logic). He found that experts were

able to correct syntax and semantic errors quickly, while these lower-level

aspects of programming were more troublesome for students. A study by

Garner et al. [Garner et al. 2005; Robins et al. 2006] documented the problems

students encounter in an introductory programming course using Java, finding

over 11,000 problems that students sought help for during lab sessions and

classifying them into 27 categories ranging from tools and task understanding

to control flow, loops, and hierarchies. The authors expressed surprise at “the

persistence, frequency, and uniform distribution of problems relating to basic

syntactic details” such as typos and missing semicolons.

Given the difficulties syntax poses for beginners, researchers have gained

insights by focusing on the syntax errors students frequently commit. For

www.manaraa.com

 24

example, Jadud [Jadud 2005] instrumented the BlueJ programming

environment to log the compilation behavior of 63 students and catalogued

that most common types of syntax errors. How well students cope with syntax

errors has been found to be one of the most effective predictors of student

achievement in a course [Rodrigo et al. 2009].

The literature explains that many of the programming errors that novices

and experts make are the result of consistently applying misconceptions that

they hold. Even when lacking a sufficient knowledge base, people build

mental models of a program, and although these conceptualizations can be

incomplete or unworkable, they are nevertheless the result of “systematic

applications of the knowledge a student currently does have to the problem at

hand” [Pea et al. 1987]. They are often logical conclusions based on current

understanding, and for this reason can be extremely resistant to change once

set. Much research has been devoted to identifying these misconceptions to

aid in the design of courses and curricula [Winslow 1996].

Bayman and Meyer assessed undergraduate students learning BASIC and

catalog misconceptions of single-line statements [Bayman and Mayer 1983].

They identified a number of misconceptions related to variables, assignments,

and conditionals, and conclude that hands-on experience with programming is

not sufficient:

“Users tend to develop conceptions of the statements that

either fail to include the main idea or that include outright

www.manaraa.com

 25

misconceptions. Explicit training is needed including the

introduction of a concrete model...”

Putnam et al.’s study [Putnam et al. 1986] similarly looks at the

misconceptions high school students have about programming in BASIC. By

administering screening tests and interviews, they found that many

misconceptions related to basic programming constructs such as variables,

assignments, and loops. Furthermore, misconceptions about these basic

concepts “[impede] productive engagement in higher level problem solving

skills such as planning and debugging.”

Spohrer and Soloway [Spohrer and Soloway 1986b] caution that

misconceptions about language constructs may not be the primary source for

programming errors. They hypothesize that this “folk wisdom” may stem

from experts seeing bugs in terms of what constructs are needed to correct

them and incorrectly concluding that the bugs are due to a lack understanding

of these constructs. In analyzing syntactically correct programs created by 61

students, they found 284 bugs and classified them into 101 different bug types

[Spohrer and Soloway 1986a]. They built “plausible accounts” on the origins

of these bug types, and concluded:

“...misconceptions about language constructs do not seem to be

as widespread or as troublesome as is generally believed. Rather,

many bugs arise as a result of plan composition problems –

www.manaraa.com

 26

difficulties in putting the pieces of the program together [...] –

and not as a result of construct–based problems, which are

misconceptions about language constructs.”

In related work, “student-constructed rules” about parameter passing have

been identified by conducting interviews where students were asked to predict

from a set of programs which work and why [Fleury 1991], analyzing

programs written by students in an introductory programming course and

develop a checklist of code features that indicate understandings or

misconceptions about object-oriented programming [Sanders and Thomas

2007]. Holland et al. [Holland et al. 1997] outline pedagogical strategies for

avoiding misconceptions about OOP, describing examples that can be used in

class to challenge the most common cases.

Perhaps the single overarching misconception about programming among

novices is what Pea calls the “superbug”. This occurs when novices act as if

the computer has an intelligent mind that can infer intentions from imprecise

language in the same way that natural language is used in interpersonal

discourse [Bonar and Soloway 1985; Pea 1986]. In a study of misconceptions

about programming among high school students, Putnam et al. conclude that

many of the misconceptions can be similarly attributed to the “inappropriate

imposition of reasoning and knowledge from more informal domains to the

formal domain of programming” [Putnam et al. 1986].

www.manaraa.com

 27

The choice of language has also been found to play a large role in the

nature of errors students make when learning to program. Stefik and Siebert

[Stefik and Siebert 2013] have examined novices using a variety of

programming languages such as Java, Python, and Perl, finding significant

differences in the accuracy rates depending on language. This is supported by

studies like Anderson and Jeffries’s [Anderson and Jeffries 1985], which found

most errors made by novice programmers using LISP, a programming

language that makes heavy use of nested parentheses, involved slip errors with

said parentheses.

As with the literature described in this section, examining the errors and

misconceptions people have with HTML and CSS can be a fertile approach to

understanding how they learn web development, what they learn about

computing more generally, and ways of improving support. However, given

that relatively similar programming languages lead to significant differences in

the types of errors novices make, what might be expected of students learning

HTML and CSS, representing entirely different paradigms as markup and

stylesheet languages?

2.3. Fundamental Computing Concepts
In order to investigate the computational knowledge students develop through

basic web development, I turn to the work of researchers and educators who

have taken a variety of approaches to identifying concepts that are

fundamental to computer science.

www.manaraa.com

 28

One example is Schwill’s framework of fundamental ideas in CS [Schwill

1994], influenced by Jerome Bruner’s principle that a scientific discipline

should be oriented by fundamental ideas. Schwill outlines four criteria a

concept must meet in order to be considered fundamental to a discipline:

• Horizontal criterion: the idea must be widely applicable in the domain.

• Vertical criterion: the idea can and should be taught at all levels of age

and education.

• Criterion of time: the idea is observable in the history of the domain.

• Criterion of self: the idea is applicable in everyday life.

By iteratively applying these criteria to evaluate CS ideas, Schwill arrived at

algorithmization, structured dissection, and language as candidates for master

ideas in CS, decomposing these to other fundamental ideas as shown in Figure

2-1.

www.manaraa.com

 29

Figure 2-1: Fundamental ideas of CS as proposed by Schwill [1994].

www.manaraa.com

 30

Concept inventories can also characterize the concepts central to a discipline.

First used in science education [Peterson et al. 1994; Hestenes et al. 1992],

concept inventories are assessments that evaluate critical concepts and identify

the precise misconceptions students hold about them. Concept inventories

typically take the form of multiple-choice exams. For each question, the

correct answer is accompanied by several “distractors” based on common

misconceptions that have been identified previously through research.

Goldman et al. [Goldman et al. 2008] take the first step in developing a

concept inventory for CS by establishing the scope of concepts. Following a

Delphi process to achieve consensus among a group of experts, they identify

the concepts that are considered most important and difficult in CS.

Programming concepts with the greatest consensus included procedure

design, scope, inheritance, abstraction, recursion, and debugging (Figure 2-2).

www.manaraa.com

 31

Figure 2-2: Fundamental programming topics with expert ratings for importance and
difficulty as reported by Goldman et al. [2008].

In developing a language-independent assessment for introductory

programming, Tew and Guzdial [Tew and Guzdial 2010] analyzed the content

of Computer Science volume of the Computing Curricula 2001, popular

textbooks, and other documents, distilling over 400 concepts down to ten

concepts fundamental to programming.

• Fundamentals (variables, assignment, etc.)

• Logical Operators

• Selection Statement (if/else)

www.manaraa.com

 32

• Definite Loops (for)

• Indefinite Loops (while)

• Arrays

• Function/method parameters

• Function/method return values

• Recursion

• Object-oriented Basics (class definition, method calls)

Card sorting studies have adopted a similar approach to identify a small set of

programming concepts [Sanders et al. 2005]. Most relevant to this dissertation,

Dorn and Guzdial conducted a card sort to investigate the programming

knowledge of professional web developers [Dorn and Guzdial 2010b]. They

found that despite only one of 12 participants holding a CS degree, they had

high rates of recognition and usage of 26 programming concepts. However,

they lacked a systematic view of programming given their lack of formal

training in CS. One conclusion is that web developers may benefit from

studying CS. An alternative view is that there is an opportunity to make the

connections between web development and underlying computing concepts

more explicit in the resources currently used to teach and learn web

development.

Threshold concepts have alternately been proposed as a way to organize

and focus computer science as a discipline [Eckerdal et al. 2006]. Threshold

www.manaraa.com

 33

concepts are defined as concepts that are transformative in the way students

view the discipline. Criteria for threshold concepts include that they are

irreversible in that they are difficult to unlearn, integrative in tying together

concepts in a new way, and potentially troublesome in that they can be

difficult and counter-intuitive. Through interviews, Boustedt et al. [Boustedt et

al. 2007] suggest object orientation and pointers as potential threshold

concepts, although Shinners-Kennedy and Fincher [Shinners-Kennedy and

Fincher 2013] temper their enthusiasm for classifying threshold concepts,

particularly through retrospective interviews.

Finally, the term “computational thinking” has been used to describe the

practices and knowledge central to computer scientists that can benefit all

people in dealing with complexity and solving problems [Wing 2006].

Concepts like data representation, modeling, algorithms, abstraction, and

decomposition, have been cited as aspects of computational thinking.

However, Pea and Kurland [Pea and Kurland 1984] have long cautioned that

there is a dearth of evidence supporting the development of higher-order

reasoning skills that can transfer to distant domains, particularly at the lower

levels of programming skill development, and that much more empirical

research is need.

Concepts fundamental to CS have been identified through a variety of

perspectives, but the results share many commonalities. Concepts are largely

based around the syntax and semantics of language constructs, or relate to

www.manaraa.com

 34

ways of managing complexity in design. The question of whether these

concepts are truly fundamental or act as thresholds may never be definitively

answered, but their appearance across multiple efforts indicate their

importance to computing knowledge.

Many of the identified concepts, such as syntax, parameterization,

conditionals, and abstraction, have analogues in HTML and CSS. For instance,

HTML elements can be assigned values to various properties in much the

same way as objects in object-oriented programming, and CSS media queries

define the conditions by which styles take effect. These concepts form

connections between basic web development and the broader computing

education literature, and lend support to basic web development as a vehicle

for engaging with important aspects of computation.

2.4. Tools for Learning HTML and CSS
In order to fully understand how people learn web development, the role that

technology play in it, both as mediator of activity and as object of mastery

itself, must be considered [Nardi 1995]. Web development tools shape how

people engage in and think about web development. After a web development

tool has been retired for another, it can leave a lasting impact through the

learning that has occurred and the social practices that have evolved through

its use.

Web authoring tools generally offer two modes of interaction: the power

and efficiency of code editors, or the ease of use of WYSIWYG (what-you-

www.manaraa.com

 35

see-is-what-you-get) editors. Traditionally, web development is practiced by

directly editing the source code of a web page in its native, textual language.

This is accomplished with the use of a code editor, which can include features

like syntax highlighting, bracket matching, and auto-completion (Figure 2-3).

Although this textual approach remains popular for the degree of control it

affords, researchers have noted its drawbacks. Greene and Petre explain this in

terms of the mapping between the code and the real world: “The closer the

programming world is to the problem world, the easier the problem-solving

ought to be... Conventional textual languages are a long way from that goal”

[Green and Petre 1996]. Particularly for novices, the abstract and exacting

nature of textual languages poses a significant challenge. Code editors are

often designed with power users in mind, providing minimal support for

beginners and squandering an opportunity to create a supportive learning

environment. Without this support, learners may fail to develop models that

adequately equip them to make sense of web development at a deeper

conceptual level.

www.manaraa.com

 36

Figure 2-3: TextMate, a code editor with syntax highlighting and bracket matching.

Figure 2-4: Dreamweaver, a web development IDE, with code pane at top and WYSIWYG
pane at bottom.

www.manaraa.com

 37

An alternative approach that often appeals to novices is WYSIWYG. A

WYSIWYG editor applies the principles of direct manipulation [Shneiderman

1983; Hutchins et al. 1985], enabling users to edit the web page and receive

immediate feedback by interacting with its visual output (Figure 2-4).

While WYSIWYG lowers the barrier to entry for coding, it too is not

without its shortcomings. WYSIWYG editors have difficulty interpreting the

intent of a user’s direct manipulations. They often generate inefficient and

unreadable source code. WYSIWYG also shields users from the underlying

code from which they might otherwise learn to create abstractions and make

inferences, such as how code renders in untested conditions. Ben-Ari [Ben-Ari

1998] writes:

What you see is not what you get: what you get is an internal

data structure containing your document and a set of operations

for transforming the data structure; what you see is merely a

visual representation of the structure... You have to construct a

viable model that will enable you to predict the outcome of any

operation on the model, and to predict how that outcome will

be reflected in the representation you see. The relevance for

CSE is that courses, help files and tutorials must explicitly

address the construction of a model, and not limit themselves to

behaviorist practices of the form ‘to do X, following these

steps’.

www.manaraa.com

 38

du Boulay warns that “even if no effort is made to present a view of what is

going on ‘inside’ the learners will form their own” [duBoulay 1986]. Lack of

appropriate support can create impoverished models that are insufficient for

explaining observed behavior. WYSIWYG editors in particular can lead to a

misapplication of analogy, where learners intuit more than is warranted from

the document metaphor.

In the vocabulary of Sedig, Klawe, and Westrom [Sedig et al. 2001],

WYSIWYG editors serve as a form of direct object manipulation, as opposed

to direct concept manipulation. The authors explain that “unlike objects

whose meaning is at the ‘surface’ level, conceptual representations can embed

knowledge at several levels, making these representations ‘highly abstract and

with great interiority’ of meaning.” In the domain of transformation geometry,

they have compared direct manipulation interfaces to ones that give explicit

representation to concepts like rotation and translation, finding the latter to

significantly improve student understanding. In the case of basic web

development, such an interface might offer direct manipulation of the CSS

box model, which determines the appearance and position of elements, rather

than merely the rendered output of the webpage that a visitor would see.

Full-featured integrated development environments (IDEs) such as

Dreamweaver juxtapose textual and WYSIWYG modes and can provide an

array of additional features aimed at supporting productivity. A drawback here

www.manaraa.com

 39

is that this complexity can overwhelm novices lacking a firm conceptual grasp

of web development, though the extent of this effect is not well explored.

Usage of WYSIWYG and code editors is mixed. Vora’s 1998 survey found

that when comparing editors, web developers rated code editors most highly

along a number of measures, including functionality, extensibility, ease of

learning, ease of use, and satisfaction [Vora 1998]. A 2005 survey found that

while programmers were mixed in their preferences (38% for WYSIWYG

editors versus 30% for text editors), non-programmers strongly preferred

IDEs providing WYSIWYG interfaces (Dreamweaver and FrontPage

combined for 65.9%) over text editors (13%) [Rosson et al. 2005].

While the literature provides numerous examples of learning environments

designed to support programming, most notably Logo [Harel and Papert

1990], ALICE [Cooper et al. 2000], Scratch [Resnick et al. 2009], BlueJ

[Kölling et al. 2003], and DrScheme [Findler et al. 2002], research on systems

that support HTML and CSS is much thinner.

RUMU Editor [Poley 2010] is a web development tool that attempts to

reconcile the needs of non-technical developers with some of the

shortcomings of WYSIWYG. Users select a layout template, which reveals

multiple text fields that correspond to content areas such as header, sidebar,

and main body. Users then input their content and tag it semantically using a

simplified textual language called Markdown. A predefined stylesheet can be

applied to the tagged content, a preview can be invoked, and code can be

www.manaraa.com

 40

generated in XHTML and CSS. Poley conducted an experiment in which

participants were provided about twenty minutes to create a two-page website,

using either RUMU Editor or iWeb, a commercial WYSIWYG editor.

Participants using RUMU Editor showed greater variance in completing the

task, with a slightly higher percentage successfully building the website. In a

post-study survey, the users of RUMU Editor also reported a slightly higher

level of satisfaction.

Virtual Lab is a web-based learning environment that supports HTML

coding activities [An 2007]. Users are presented with a problem, submit the

code needed to solve it, and receive feedback on how the code renders and

the errors that have been committed (Figure 2-5).

Figure 2-5: Virtual Lab, a web-based environment for learning HTML.

www.manaraa.com

 41

Kaplan and An use Virtual Lab to investigate the effects of different

representations of worked examples on students learning HTML [Kaplan and

An 2005]. Their study involves three different representations of worked

examples: facts, procedures, and visual model. In the facts version, the

example code is accompanied with factual information about the syntax and

functions of the elements. In the procedures version, step-by-step instructions

are given for constructing the example code. Finally, in the visual model, the

example code is mapped to a diagram of its structure and to the visual output.

Twenty students were assigned to each of these three conditions and were

asked to complete a lesson on HTML tables. After a brief introduction to the

topic, students alternated between worked examples that reveal how an expert

might solve a problem in their condition’s format, and similar problems that

they attempted to solve on their own. The lesson concluded with all of the

conditions completing the same two questions on factual knowledge, two on

output prediction, and two on error detection.

Kaplan and An found that while all three groups demonstrated a similar

level of factual knowledge, the visual model group generated significantly

more correct code and fewer conceptual errors in the same amount of time as

the other groups. They go on to remark that novices often have difficulty

taking surface features of the code, such as indentation, whitespace, and other

typographical aspects, and abstracting an underlying structure or relationship

to output.

www.manaraa.com

 42

Figure 2-6: WebCrystal, a tool that allows users to learn how to recreate elements on a web
page using HTML and CSS.

WebCrystal is a web development tool that allows users to select elements on

an existing web page, learn how they are constructed, and extract the relevant

HTML and CSS code snippets for reuse [Chang and Myers 2012]. This

browser extension prompts users with questions about the aspect of the

element they wish to explore, and responds with a textual description and

customized code snippet (Figure 2-6). In an evaluation, 6 participants were

asked to use WebCrystal and another 6 Firebug (a popular browser extension

that facilitates debugging), while completing 10 coding tasks. The participants

using WebCrystal completed more of the tasks and in less time. In interviews,

participants with novice or intermediate knowledge of HTML and CSS found

the textual explanations much more helpful than did the expert users.

www.manaraa.com

 43

This section discusses the major approaches to designing web editors and

presents several experimental tools for learning HTML and CSS. Most

commercial editors have either been designed using a WYSIWYG interface

that lowers the barrier to building web pages but fundamentally changes the

nature of the process, or a textual interface that results in greater efficiency for

advanced users but raises many barriers for beginners. Experimental systems

have either been auxiliary tools for learning assessment (Virtual Lab) and

exploration (WebCrystal), or have abstracted the process of building web

pages (RUMU Editor). As yet unexplored is how a web editor can be designed

to support learners while exposing them to the computational nature of

HTML and CSS.

www.manaraa.com

 44

Chapter 3
Identifying Learning Barriers in a

Web Development Course

In this chapter, I explore the barriers beginners encounter when learning basic

web development, contextualizing the difficulties students have with HTML

and CSS within the broader scope of learning web development in a formal

learning environment. I accomplish this by analyzing the issues students

sought help for in an online web development course. What aspects of the

course hindered their progress? What issues turned their enthusiasm into

frustration? Were the majority of issues related to writing and reading HTML,

CSS, and JavaScript, or were non-coding aspects of web development equally

problematic? Were there computational concepts underlying these issues?

The literature offers a wealth of research on identifying and lowering

barriers for novice programmers [Robins et al. 2006; Ko et al. 2004; Kelleher

and Pausch 2005]. However, few studies have explored such issues in the

realm of web development, particularly at the introductory level when

students with minimal coding experience are learning HTML and CSS. The

struggles and triumphs of non-CS students learning to code can inform not

only the design of web development courses and tools, but also of CS courses

and tools intending to appeal to broader audiences.

www.manaraa.com

 45

Learning barriers have the potential to be both obstacles and opportunities

in the classroom. They can impede progress and induce frustration, anxiety,

and attrition among students. Yet, challenge is also an important ingredient of

learning. In the right measures, it contributes to student motivation and

satisfaction [Ames and Archer 1988]. Barriers can set the stage for “teachable

moments” [Hansen 1998], where conceptual conflict leads to a restructuring

of beliefs and the assimilation of new ideas [Piaget 1950]. By resolving them

with the aid of an instructor or classmate, students practice useful learning

strategies [Nelson-LeGall 1985] and develop the ability to resolve similar

issues without assistance [Vygotsky 1978]. Help seeking not only can benefit

the seeker, but also the helper and other students. Therefore, the goal of

identifying barriers is not necessarily to eliminate them, but to inform

decisions about whether to deal with them as obstacles to be mitigated or

intentional learning opportunities.

The following research questions guided this study:

RQ1. What are the barriers students encounter in an introductory web

development course?

RQ3. What computational concepts and skills do beginners engage

with when learning HTML and CSS?

www.manaraa.com

 46

By exploring this question, I hoped to identify factors that may cause students

to develop negative attitudes toward web development, and uncover

opportunities for fostering more productive and enjoyable learning

experiences in a web development course.

Section 3.1 provides a description of the course and my data collection and

analysis methods. Section 3.2 reports on my findings. Finally, Section 3.3

discusses the implication of these findings in terms of web development

education and research.

3.1. Methods

3.1.1. Data Collection

To uncover challenges that students face when learning web development, I

examined help-seeking activity in an introductory web development course. In

studying cases where students encounter an insurmountable problem and turn

to the help forums for assistance, this method shares similarities with critical

incident technique [Flanagan 1954] which recognizes the value of examining

critical moments in providing insight into the problems participants

experience and their potential solutions.

The web development course was offered online to students pursuing

Master’s degrees in Library and Information Science at a large Mid-Atlantic

university. These are students with largely non-technical backgrounds. The

course is offered in the curriculum because many librarians go on to work in

www.manaraa.com

 47

small community libraries where the responsibility of maintaining and

updating websites falls on them.

The course ran for ten weeks and introduced the topics shown in Table

3-1. During the first eight weeks of the course, each student developed a

website incrementally as new topics were introduced, using a barebones text

editor such as Notepad. During the final two weeks of the course, students

developed a second website using any tool of their choice. Most of the

students opted to use Adobe Dreamweaver.

Table 3-1: The weekly schedule of topics for the course.

Week Topics
1 Internet overview, FTP setup, copyright
2 HTML, XML, CSS, basic formatting, deprecated tags

and attributes
3 Tables, lists, links, design concepts, hexadecimal

color values
4 Visual design, graphic images, file types and formats,

table layouts, web 2.0, navigation
5 Graphic image creation, background tiles and

gradients, search engines, CSS
6 Framesets, inline frames, JavaScript
7 JavaScript, rollover buttons, style sheets
8 Image maps, layout with CSS, CGI
9 Forms, CGI, JavaScript form validator, accessibility
10 RSS, meta tags

Help forums were available where students could post questions to classmates

and the instructor. Participation in the forums was voluntary and did not

impact their grades. In 2010, forum posts and related metadata were collected

from two sections taught in the fall terms of 2008 and 2009 by the same

instructor. These sections comprised 49 students (39 females, 10 males). From

the help forums, I collected each post’s title, author, timestamp, and body.

www.manaraa.com

 48

The help forums were chosen as the focus of this study because they

offered a way to assess student difficulties that were reported as they were

happening, as opposed to retrospective interviews where students are asked to

recall details from weeks earlier. It also provides a method of examining the

issues quickly and with minimal interference in the course itself, which was

appropriate given the broad and exploratory nature of this study.

A total of 747 posts, comprising 213 discussion threads, were collected.

On average, students posted 15.24 times (SD = 16.52), with the most active

student making 63 posts while three students did not post at all.

3.1.2. Data Analysis

I conducted a content analysis using the data collected from the help forums.

Content analysis is a technique for making valid and reliable inferences “from

texts (or other meaningful matter) to the contexts of their use” [Krippendorff

2004]. Codes were developed inductively from the data to categorize issues

that students sought help for through the forums. These codes are

summarized in Table 3-2.

Table 3-2: Codes for categories of challenges.

Category Description
Administration Asking questions about curriculum, instructions, and assessment
Content Collecting, creating, and editing text, images, and multimedia
Design Planning information architecture and visual design
Coding Creating and manipulating HTML, CSS, and JavaScript code
Technology Selecting, installing, and configuring technology
None Sharing general information and providing help

www.manaraa.com

 49

I selected the thematic unit of analysis, which can flexibly range from a single

sentence to multiple paragraphs. Each post was initially classified as a single

instance of help seeking, but was examined further to determine if it contained

multiple, distinct codes. In such cases, I divided the post into the appropriate

number of thematic units.

A second researcher, Susan Wiedenbeck, and I independently coded a

random 10 percent sample using this code set, attaining over 90 percent

agreement and Cohen’s κ of 0.841. A κ value of 0.8 or greater generally

indicates the reliable application of a code set [Landis and Koch 1977]. Upon

reaching this threshold with the sample, I coded the remainder of the dataset

on my own. Posts classified as containing no instances of help seeking were

removed from subsequent analysis.

Table 3-3: Codes for types of coding challenges.

Topic Description
Hyperlinks Creating links to other resources
Images Embedding images
Image Maps Creating image maps
Tables Creating tables
Lists Creating lists of items
Forms Creating forms with input elements and actions
Frames Creating framesets or inline frames
Backgrounds Setting background colors, images, and tiling
Fonts Setting font styles
Layout Positioning and aligning elements
Functions Defining functions, attaching as event handlers
Objects Instantiating objects
Source Files Managing source code at the file level

www.manaraa.com

 50

I took help-seeking instances pertaining to writing code and divided them into

specific topics. This second level of codes is displayed in Table 3-3. A random

sample was again coded independently by another researcher and me using

this code set, reaching nearly 90 percent agreement and Cohen’s κ of 0.869, at

which point I coded the rest of the data.

Finally, I took a thematic analysis approach [Braun and Clarke 2006] to the

content of the posts, in order to identify patterns among the issues that drove

student help-seeking. Thematic analysis is an inductive method for identifying

patterns or themes in qualitative data and has commonalities with grounded

theory [Corbin and Strauss 1998], including a process of coding data in

multiple rounds, but has more flexibility in that the generation of a theory is

not necessarily the end goal.

3.2. Findings
In this section, I present the results of the analysis, supplemented with

illustrative excerpts from the data.

3.2.1. Types of Barriers

The vast majority of issues students sought help for related to coding,

administration, and technology. These three categories combined to make up

nearly 90 percent of all help-seeking instances. Over half of all students sought

help at least once for each of these categories. Table 3-4 provides a full

www.manaraa.com

 51

breakdown of the help-seeking instances and Figure 3-1 shows how they

occurred on a week-to-week basis spanning the ten weeks of the course.

Table 3-4: Help seeking by type.

Category
Help-Seeking Instances Unique Students
Count Percentage Count Percentage

Coding 125 34.3% 25 51.0%
Administration 109 29.9% 29 59.2%
Technology 89 24.5% 29 59.2%
Content 24 6.6% 16 32.7%
Design 17 4.7% 9 18.4%

Figure 3-1: A week-by-week profile of help seeking for each category.

3.2.1.1. Coding

About one-third (34.3 percent) of help-seeking instances related to developing

HTML, CSS, and JavaScript code. As shown in Figure 3-1, students began

seeking help of this type in week 2, coinciding with their first exposure to

www.manaraa.com

 52

basic HTML and CSS. This activity peaked in week 7 with the introduction of

JavaScript, which is not surprising given that it was the first programming

language most students had ever encountered and the third distinct computing

language introduced in the course. Difficulties related to coding remained

substantial for the duration of the course and were precipitated by a range of

topics. I provide a detailed rundown of these in Section 3.2.2.

3.2.1.2. Administration

After coding, administrational issues (29.9 percent) were most prevalent

among help-seeking instances. They remained consistent from week to week

and were primarily requests to clarify an assignment’s requirements or

instructions. I expect similar issues to arise in other courses, independent of

the subject matter. Nevertheless, two instructional challenges were particularly

relevant to web development.

First, one student expressed ongoing distress about the topics covered in

the course, explaining that they did not follow modern web development

conventions.

“Why aren’t we learning web standards? We shouldn’t be using

tables for website layout, or the font tag. This is no longer done.

The only thing we should be using tables for is general

information (small data stuff). I am ready to cry. I feel like to get

an A in the class I have to do everything the wrong way.” (P9)

www.manaraa.com

 53

Another student offered a counterpoint, stating that though established

practitioners might not use these techniques, they were valuable for

pedagogical reasons.

“I know as a high school teacher if I started instruction where I

wanted my students to end up, I would lose most of them. I

often assign writing assignments that I am not going to correct

for surface accuracy, in order to develop fluency. And what

about reading? The point of reading instruction is not phonics

or reading out loud, but one takes the students through those

steps in order to develop silent reading comprehension. You are

like the advanced student who needs enrichment activities... I

know it must be frustrating, but I hope you can hang in there

until the rest of us reach your level.” (P1)

The first student responded by explaining that even as a beginner, she

preferred to learn techniques that adhered to web standards from the start:

“I am not super advanced or anything. I just know some of the

web standards rules... I hope the professor gets into CSS soon. I

really do not want to design my website in tables, and this global

table layout makes me sick to my stomach.” (P9)

www.manaraa.com

 54

This exchange underscores the difficulties that course designers and teachers

face in keeping pace with the rapid changes that characterize web

development practice.

A second instructional challenge faced by many students pertained to the

online sharing of code. Various forms of media were used to communicate

about code during the course, including videos, text documents, and forum

posts. Students discovered that these media were often not well suited for this

purpose. A number of students reported difficulty reading code in videos due

to their low resolution. In several other instances, students reused example

code from Word documents. Unfortunately, in these examples straight

quotation marks (i.e., " ") had been inadvertently converted smart quotation

marks (i.e., “ ”), causing syntax errors that were difficult to diagnose. Finally,

students often included snippets of their code in their help forums posts. On

occasion, this code was modified as a security measure by the forum software,

which created confusion among the students.

3.2.1.3. Technology

Technological issues were at the root of about one quarter of help-seeking

instances (24.5 percent), creating a significant hurdle at the outset of the

course. Web development depends on a wide range of technological concerns

beyond code, including activating shell accounts, configuring FTP programs,

and managing web servers. Troubleshooting problems related to these tasks

was complicated by the online nature of the course and the diversity of system

www.manaraa.com

 55

configurations used by the students. These issues in particular sapped student

motivation. For instance, while attempting to connect to an FTP server and

grappling with authentication errors, one student remarked:

“I followed the same exact path you did to try to solve this

problem. I still cannot connect... This kind of stuff makes me

want to just drop this class. Unfortunately, I need it to graduate

this quarter.” (P20)

Students considered these tasks as distractions, diverting their attention from

what they perceived as the main purpose of the course. In the first week of the

course, a student reported:

“I’ve dropped the class for now. There seems to be too many

problems unrelated to what we are supposed to be learning.”

(P24)

After the initial technological challenges were resolved, new issues emerged on

occasion in later weeks and created new impasses. For example, after using a

dedicated FTP client successfully for several months, multiple students had

difficulty when they attempted to configure the FTP feature built into

Dreamweaver.

www.manaraa.com

 56

3.2.1.4. Content

At 6.6 percent, a small share of help seeking related to content, revolving

around questions about intellectual property. Students asked how copyright

and fair use applied when appropriating logos, stock photography, and

streaming video from other sources.

3.2.1.5. Design

Design issues constituted 4.7 percent of help-seeking instances. These

occurred mainly in the early stages of the course when design topics were

introduced. Students sought advice on the visual design and information

architecture of their sites, for instance figuring out which pages should be

included in the main menu.

3.2.2. Coding Barriers

Next, I took a more granular look at help-seeking instances pertaining to the

development of HTML, CSS, and JavaScript code. Table 3-5 shows the

different topics that motivated development help seeking. For each of these

topics, students faced a variety of barriers, such as selecting the correct coding

elements, coordinate multiple elements together, and understanding their

outputs [Ko et al. 2004]. I discuss the most common topics in turn.

3.2.2.1. Source File Management

Among development-related issues, students posted most often about

organizing and accessing source code at the file level (20.5 percent). Examples

of this included questions about declaring correct document types, assigning

www.manaraa.com

 57

different applications to handle source files, and affixing appropriate file

extensions. A number of students operated under the misconception that

because source files were assigned to default applications based on their file

extensions, they could not be accessed using other code editors or web

browsers. In one case, a student weighed in on the appropriateness of using

the .html file extension for XHTML code.

“I too saved them as html. I believe from the reading that it is

fine for xhtml to be saved as html. It doesn’t have its own

extension.” (P19)

The frequency of these issues provides evidence that beyond the manipulation

of code at the textual level, the management of source code at the file level

raises a number of new challenges for novices.

Table 3-5: Coding challenges by topic.

Category
Help-Seeking Instances Unique Students
Count Percentage Count Percentage

Source Files 26 20.5% 12 24.5%
Images 17 13.4% 11 22.4%
Layout 13 10.2% 10 20.4%
Functions 12 9.4% 8 16.3%
Links 11 8.7% 7 14.3%
Background 11 8.7% 7 14.3%
Tables 8 6.3% 7 14.3%
Objects 7 5.5% 3 6.1%
Lists 6 4.7% 3 6.1%
Forms 5 3.9% 3 6.1%
Frames 5 3.9% 3 6.1%
Image Maps 4 3.1% 3 6.1%
Fonts 2 1.6% 2 4.1%

www.manaraa.com

 58

3.2.2.2. Embedding Images

A significant proportion of development help seeking involved embedding

images into web pages (13.4 percent). Students had encountered broken

images as end users in the past, but were now in a position where they needed

to diagnose and correct them.

“I am not sure what I am doing wrong here. After I put the

code in for my image upload the only thing I see on my web

page is a white box with a red x in it. I have seen this so many

times before on other web sites but never knew what it meant

other than there should be a picture in its place.” (P20)

Troubleshooting such a problem, one student remarked:

“Try renaming homeUp.jpg to homeUP.jpg. I [think] this will

fix your problem, darn case sensitive browsers! ;-) At least that

is my theory at the moment.” (P32)

Usually, broken images were a result of an incomplete or incorrect path to the

image file. Though they were introduced in week 4, students reported

difficulties as late as week 8 of the course.

www.manaraa.com

 59

3.2.2.3. Layout

Layout was another challenge faced by students, motivating 10.2 percent of

development help-seeking instances. Students often had difficulty

implementing the layouts they envisioned.

“I just created the table containing my thumbnails (not clickable

yet), but my tables seem to land wherever they feel like on the

page... I can’t figure out the rhyme or reason behind it...” (P22)

Students discovered that they could not specify an element’s position by

simply applying a property to that element. Instead, layout involved a great

deal more complexity, determined by an interaction of rules, neighboring

elements, and the context in which the page was rendered.

3.2.2.4. Functions

The use of JavaScript functions to create rollover buttons caused substantial

difficulties for students (9.4 percent). In one assignment, students were

provided with an example for defining rollover functions and attaching them

to images as event handlers, and were required to adapt it to their websites.

Assisting a fellow student who was working on this assignment, someone

commented:

www.manaraa.com

 60

“I’m not sure if this is all of what’s not working, but there are

some places in the script definition where you need to replace

text with the actual information about your buttons...” (P45)

Students seeking help with JavaScript functions demonstrated a shallow

understanding of the code, unclear on which parts to leave untouched to

preserve behavior and which to modify to work with their own sites.

3.2.2.5. Hyperlinks

Closely paralleling difficulties with images were ones creating links (8.7

percent). The most frequent case was a broken link that did not point to its

intended destination. Just as with broken images, students would specify an

incorrect path, most often when using relative paths. Another common error

was forgetting to pair an opening anchor tag with a closing tag. One student

confessed:

“I try and create both my opening and closing tags at the same

time and then add the content because I have a tendency to

forget closing tags. Lets not talk about the time it took me 2

days to figure out why half my page had a link (forgot a

to close the link tag).” (P32)

Even after learning the common culprits for broken images and links, students

at times had trouble identifying these errors within their own code. Though

www.manaraa.com

 61

relatively basic topics, students sought help for images and links into the later

weeks of the course. When students were struggling to learn about more

advanced topics, these difficulties added more fuel to the fire.

3.2.3. Computational Concepts

3.2.3.1. Notation

Students grappled with the formal nature of HTML, CSS, and JavaScript

notation when translating their intentions to instructions. For instance, when

creating links and images, students made minute errors with case sensitivity,

white space, and missing delimiters. An earlier study of problem types in an

introductory programming course [Robins et al. 2006] similarly found these

problems of “little mechanical details” to occur most frequently.

A student sums up this challenge of formal notation:

“If there is one thing to learn in this course, it’s that the details

matter when it comes to writing code... One error – one tiny

typo, and sometimes your whole code ends up broken! So be

careful when writing your code.” (P14)

This formality contrasts with the flexibility not only of natural language, but

also of popular computing systems like word processors and search engines.

Students had to acclimate themselves to this inflexibility when writing and

debugging code. Difficulties with notation were exacerbated by inconsistencies

www.manaraa.com

 62

in how different browsers handled faulty syntax and the issues with

communicating code online discussed earlier.

3.2.3.2. File References and Paths

A second concept underlying many of the development issues were file paths,

which are used to specify the location of a target within a hierarchy. Students

used both absolute and relative paths when creating links, embedding images,

and referencing external files.

Here, a student diagnosed a problem that another student was having

while attempting to reference a file:

“Make sure you have a directory in your class folder on the

server that is called "javascript_form folder". If you don’t have

that directory, your code is not finding your validation script. If

you put the .js file in your root class directory with all of your

other .html files, then just remove the part of your code that

includes "javascript_form folder" in the path.” (P27)

During the course, students also interacted extensively with hierarchies and

paths when managing files on their local machines and using SSH and FTP

programs to navigate a server.

3.2.3.3. Nesting HTML Elements

Nesting – embedding constructs within instances of themselves – is a central

feature of markup languages like HTML. Content is enclosed in pairs of tags,

www.manaraa.com

 63

and one set of tags is often contained within another. Students were prone to

making errors due to the nested nature of markup, forgetting to close tags and

instead treating them as sequential commands to be invoked one after

another.

“Here is an example of short refrigerator story

using the word My” (P46)

Nesting was most prominent when constructing tables and lists. One student

attempted to build a list within a list and described her difficulty escaping the

sub-list.

“Okay, my nest is a mess. ha. i see numbers everywhere that i

didn’t even put in. :0(Also, my nest keeps stretching to the

right, and I am not sure how I managed to do this!” (P5)

Difficulties with nesting are likely to prevent substantial progress when

learning web development, given that in practice, most web pages require

requires writing and navigating many levels of nested HTML code.

3.2.3.4. Decomposition and Abstraction

Students encountered several cases of decomposition and abstraction while

learning web development. Decomposition, breaking a program down into

subprograms in order to simplify development and maintenance, was

practiced when students moved CSS code that was in-line with HTML code to

www.manaraa.com

 64

external style sheets. Students were initially unclear on the purpose and

process of these changes.

“I don’t understand step 7 and 8... It says to open the document

from which you cut the styles. So from what I understand, after

you cut and paste everything into a new document and name it

whatever.css. You then re-open the old index.html document

and delete the opening and closing style tags. What style tags are

they referring to? Everything that we just added in chapters 7-10

we now have to delete?” (P46)

After an exchange with classmates, the student began to realize the benefits of

decomposition.

“...so we are creating only one css page that will work for ALL

of our .html pages?” (P46)

Abstraction, hiding the details irrelevant to the current task, was also an aspect

of the course. External style sheets and JavaScript files allowed students to

readily reuse CSS and JavaScript functionality in their websites without regard

for implementation details. The use of CSS selectors such as IDs and classes

was also a common case of abstraction, allowing students to apply a style to a

set of elements with a single command. While these cases confer benefits in

www.manaraa.com

 65

terms of organization and efficiency, they introduce new constructs and

concepts that proved problematic for some beginners.

3.3. Discussion

3.3.1. Authenticity versus Complexity

Prior research has shown that contextualizing a computing course can foster

motivation and engagement among students [Forte and Guzdial 2005].

Compromising that authenticity [Shaffer and Resnick 1999] can have a

negative effect, as exemplified by the protests of the student who wished to

follow web standards as practiced by professionals.

However, this study illustrates how a contextualized approach can

sometimes result in increased complexity and must be approached with careful

consideration. The breadth of barriers students sought help for underscore

this point. Students learned many aspects of web development, including

system administration, graphic design, and frontend programming. This broad

coverage limited opportunities to dive deeply into a particular topic and spread

thin the mental resources that students could apply to learning any one.

Course designers therefore must be selective in deciding which aspects of

web development should strive for authenticity to increase motivation and

which can be simplified to manage complexity. In this study, technological

issues such as configuring software in particular started the course on the

www.manaraa.com

 66

wrong foot and the frustration induced by them seemed to outweigh the

motivational effects of authentic practice for some students.

3.3.2. The Role of JavaScript

Many web development courses [Lim 1998; Mercuri et al. 1998; Reed 2001;

Treu 2002; Sridharan 2004] include a programming component, and the

course in this study was no exception. In ten weeks, students were introduced

to a wide array of topics including three distinct computing languages: HTML,

CSS, and JavaScript.

Students experienced substantial difficulties with HTML, such as creating

links and lists, even in the later weeks of the course. Furthermore, students

demonstrated a shallow understanding of JavaScript. Taken together, these

findings suggest that instead of a web development course that sprints toward

programming, a more elementary version that delves deeply into HTML and

CSS may better serve some learners. While the interrelated roles that HTML,

CSS, and JavaScript play to construct web pages should be discussed,

reserving even the basics of JavaScript for a later course is a viable option.

Especially for students without prior programming experience, a few weeks of

instruction may not be a sufficient introduction to JavaScript, and to the

contrary may cause confusion and instill a negative disposition toward learning

to program.

www.manaraa.com

 67

3.3.3. Connecting the Web to Computing Education

In my analysis, I have identified a set of computing concepts that underlie the

barriers students encountered when learning web development. They manifest

primarily in HTML, which has been the subject of little research in the

computing education domain, and give support for using HTML and CSS as

rich contexts for exploring computing concepts.

For example, notation puts students into the mind-set of instructing

computers using precisely specified language. Hierarchies and paths offer ways

of thinking about familiar systems such as file systems and the web, while

setting the stage for later topics like traversing the JavaScript Document

Object Model (DOM). Nesting makes frequent appearances in HTML, giving

students practice with navigating multiple levels of nested code. By separating

content (HTML) from presentation (CSS) and behavior (JavaScript), students

apply decomposition and abstraction in order to manage complexity.

For many web development courses, including the one in this study, the

primary goal is not to teach computer science per se, but to arm students with

practical skills for creating and maintaining websites. Nevertheless, by

explicitly addressing such concepts in a web development course, educators

can help students to go past the surface features and form viable mental

models. The goal in these courses too is to attain generative knowledge that

can be applied to web development beyond any particular technology.

www.manaraa.com

 68

3.3.4. Limitations

The content analysis of help seeking activity in an online course has two main

limitations. First, by using help forums as a data source, the study is biased

towards students who were willing to publicly seek help for their difficulties.

Cases where students sought help through other resources, or struggled with

their difficulties in solitude, are not captured. Furthermore, the study focuses

on insurmountable barriers. Students are likely to have successfully overcome

many other issues without the aid of the help forums, which may nevertheless

have contributed to their frustration.

Second, this study relies on the students’ interpretation of their own

difficulties. Given that the students are novices, the accounts they provided in

the forums had the possibility of being highly inaccurate or incomplete. In

other cases, they may not even have been aware of problems they were

experiencing.

Despite these limitations, my methods provided a useful first pass given

the exploratory nature of the study. I was able to investigate the breadth of

barriers students face, contextualizing subsequent studies that focus on HTML

and CSS, and identify directions for further work.

3.4. Summary
Through a content analysis of help forums, I identified the diverse issues that

acted as barriers to learning in an introductory web development course.

These included issues related to coding, technology, administration, design,

www.manaraa.com

 69

and content, with coding, administrative, and technological issues combining

for the bulk of them at 34.3 percent, 29.9, and 24.5 percent respectively. There

was evidence that some students perceived building web pages with code as

the primary focus of the course and were more accepting of difficulties related

to it, while technological issues such as configuring shell accounts and FTP

programs were considered secondary topics that induced frustration, even

causing one student to drop the course.

Second, I explored how the barriers related to writing code and underlying

computational concepts. Coding barriers made up over one-third of the issues

for which students sought help. Of these, most related to writing HTML.

Many of these difficulties had at their root concepts that relate to computation

more generally, including notation, hierarchies and paths, nesting, and

decomposition and abstraction. These findings give support to the idea that an

introductory web development course, particularly aimed at non-technical

students, does not necessarily need to make programming with JavaScript the

focal point in order to be a subject rich with computational concepts. Even

HTML and CSS provide many opportunities to develop computational

literacy, justifying further study of how people learn these languages and how

tools can be designed to better support them.

The severity of the technological and administrative barriers, which

students perceived as secondary to building webpages and found frustrating,

www.manaraa.com

 70

and the computational richness of HTML and CSS, motivate the initial design

of openHTML, a web editor for beginners.

www.manaraa.com

 71

Chapter 4
Designing the openHTML Editor

In this chapter, I introduce openHTML1, an experimental web editor that I

have designed to support learning. It constitutes the technological intervention

of my design-based research approach as described in Chapter 1. In other

words, openHTML’s design is guided by multiple rounds of research, each of

which reveal something new about how students use it and that lead to new

research objectives. It also serves as a test-bed for exploring the following

research question:

RQ4. How can a web editor be designed to support beginners in

learning HTML and CSS?

The field of human-computer interaction has traditionally prioritized

efficiency and usability as the criteria to evaluate systems. However, I have

adopted a learner-centered approach [Soloway et al. 1994] for the design of

openHTML, which emphasizes understanding and growth as the primary

goals. I outline the design principles that motivate it, its initial implementation,

and a pilot study to evaluate it.

1 http://openhtml.org

www.manaraa.com

 72

4.1. Design Principles
The design of openHTML is guided by three overarching design principles.

These principles are derived from findings described in the previous chapter

and are infrastructural, transitional, and instructional in nature:

• Principle #1: Abstract away the infrastructure.

• Principle #2: Focus learning on the code.

• Principle #3: Facilitate code sharing.

In the following sections, I discuss each of these principles in detail.

4.1.1. Principle #1: Abstract Away the Infrastructure

The first principle of openHTML is to abstract away much of the

infrastructural issues related to web development, including installation,

configuring, and hosting. In the previous study, I found that technological

issues posed significant learning barriers for students in an introductory web

development course. In the early weeks of the course, students experienced

difficulties with installing development software, configuring shell accounts

and web hosts, and managing files locally and remotely. Students expressed

frustration, viewing these issues as delaying them from coding, which they

viewed to be the primary purpose of the course and where they were more

willing to accept challenges.

A simplified interface for the editor itself is also a reflection of this

principle, given learning enough of a complex development environment to be

www.manaraa.com

 73

productive often requires investing a significant amount of time that detracts

from time spent learning other aspects of web development.

4.1.2. Principle #2: Focus Learning on the Code

The second principle is to design software that helps students focus on

learning the code. In terms of the cognitive dimensions of notation framework

[Green and Petre 1996], openHTML strives to enhance multiple dimensions

including progressive evaluation, visibility, viscosity, but does not attempt to

reduce the closeness of mapping between notation and the problem domain

of building web pages. Instead, HTML and CSS are recognized as essential

languages of contemporary web development practice. The previous study

showed that students had significant trouble with writing code in HTML and

CSS, and that these difficulties relate to various computational concepts,

practices, and skills. This provides some justification for HTML and CSS as

the subject of deeper study, and for exploring ways to provide greater support

for learning them.

Focusing on code as a primary learning goal helps to clarify which aspects

of web development can be minimized in openHTML’s design and which

should be emphasized for beginners. For instance, aims of openHTML

include reducing the steps needed before users can start writing and evaluating

code, and deemphasizing other aspects of web development such as server

configuration and management.

www.manaraa.com

 74

The goal of openHTML is not to replace more full-featured and powerful

code editors, but to support quick and productive experiences with coding

early on before graduating to more sophisticated tools. One way to

conceptualize this is to think of openHTML as scaffolding early experiences

with code. Scaffolding can be described as having two goals: enabling students

to achieve a goal which would not be possible without external support and

(2) eventually learning to achieve that goal without support [Guzdial 1994].

The second goal suggests that scaffolding must fade away or be discontinued

and allow the learner to eventually complete activities on her own. Different

approaches to designing scaffolding with technologies include intelligent tools

that track students’ activities and intervene with help when needed [Anderson

et al. 1995], tools that structure processes and elicit articulation [Owensby and

Kolodner 2002], and tools that structure discourse [Scardamalia and Bereiter

1994]. These are all examples of “within tool” scaffolding – support for

activities that is carefully designed into a tool.

But Puntambekar and Kolodner note that scaffolding is not necessarily a

feature of a single tool; rather, it can be distributed throughout a socio-

technical system [Puntambekar and Kolodner 2005]. openHTML is positioned

as one part of a larger system of tools and practice that includes not only the

immediate learning context (teacher and peers in the course), but also the

tools and practices that learners may eventually adopt as their web-building

skills become more developed. In other words, by serving as a simplified

www.manaraa.com

 75

but nevertheless fully functional web editor, openHTML itself can be thought

of one element that is consciously designed to contribute to “between tools”

scaffolding. Ideally, learners will eventually be able to retire openHTML and

transition to more expert tools.

4.1.3. Principle #3: Facilitate Code Sharing

The final design principle was to facilitate communication related to the code.

One of the findings of the previous study was that a number of barriers

related to sharing and communicating about code. Within the help forums,

students would request assistance from their classmates by pasting a snippet of

their code. In the forums, this code was formatted as natural text making it

difficult to read and to view rendered in the browser. Communication was also

hindered on some occasions when the code was unwittingly modified,

whether by the forums software to mitigate security concerns or by a text

editor that had converted straight quotes to curly quotes.

Therefore, openHTML strives to ease accessing, publishing, and

communicating about code that has been written in openHTML. I approach

design as a sociotechnical problem with both technical and social components,

and accordingly place great importance on the social context in which the

openHTML Editor will be used and effect it can have on social

communication and collaboration.

www.manaraa.com

 76

4.2. Implementation
openHTML is developed from a fork of JSBin2, an open-source tool designed

for collaborative JavaScript debugging. The decision to develop an editor

instead of using an off-the-shelf solution was motivated by two factors. First,

it allows me to retain control over data collection. By designing and managing

the tool myself, I am able to use openHTML to gain access to the specific data

of research interest while ensuring the privacy of participants. Second, it

enables experimentations that explore how the design of a web editor can

improve the learning experiences of beginners. By developing the tool, I have

the freedom to add novel features and resolve usability issues as they are

identified. In the following sections, I describe the various aspects of

openHTML.

4.2.1. Web-Based

openHTML is used within any modern web browser. Users navigate to the

openHTML website, where they are presented with the option to log in or

sign up for an account. Once logged in, they have access to the openHTML

editor, which accepts HTML and CSS code as input and renders the code in

the same browser window. Saved web pages are stored on a central database.

A web-based option is beneficial for several reasons. First, it reduces the

need to install and update software, which is can be heavily restricted in

classroom environments, instead relying only on a web browser that is likely

2 http://jsbin.com

www.manaraa.com

 77

already available. Second, it makes it possible to abstract away many of the

infrastructural concerns, including file management, web server, and FTP. By

eliminating local file management, students can easily access their data from

any machine, which may be an issue in a computer lab-based class. Publishing

web pages online is not a discrete action that students need to take, but can

happen nearly instantaneously. Finally, openHTML can be instrumented for

data collection with relative ease.

Figure 4-1: The edit mode of openHTML, with a CSS pane, HTML pane, and live preview
from left to right. Several other options are provided in the toolbar at top.

4.2.2. Minimal Interface

openHTML is comprised of two primary modes: edit and page list. In the edit

mode (Figure 4-1), the user is presented with three panes for CSS input,

www.manaraa.com

 78

HTML input, and a preview of the rendered webpage. The preview provides

immediate feedback based on any changes in the HTML or CSS panes.

The web page can be opened in its own window by clicking the button

labeled with the custom URL. These panes can be toggled on and off with

checkboxes in the toolbar. Changes to the code are saved by clicking the

“Save” button, and the drop-down menu beside it reveals addition options for

copying and downloading the page. When viewing another user’s page, the

saving option is disabled, replaced with an option to copy the web page.

Compared to most code editors and development environments, openHTML

presents a simplified interface and a minimal number of options.

Figure 4-2: The page list mode of openHTML. A list of web pages is shown on the left, and a
preview of the selected web page on the right. The same web page has been expanded to

show all previous revisions.

www.manaraa.com

 79

4.2.3. Saving Revisions

By clicking the “Page List” button, a user can access the page list mode, which

lists all of web pages they have created in openHTML (Figure 4-2). Users can

also hover over a page name that displays a preview of the web page in the

right pane, and click the “Rename” link to give a custom name to a web page.

Web pages created in openHTML are not discoverable, but can be shared and

accessed by other users.

openHTML implements a versioning system in order to encourage

experimentation with the code. Earlier revisions of a web page are kept in the

database and can be accessed by expanding a web page in the Page List. This

was motivated by interviews with practicing web developers [Park and

Wiedenbeck 2010] where I found that they often devised rudimentary version

control systems by incrementing numbers in file names or duplicating their

source files to reduce the risk of breaking their websites during development.

4.2.4. Limitations

The design decisions made during the development openHTML are

accompanied by a number of tradeoffs. Limitations include support for only

individual web pages rather than whole websites. While a website can be

constructed from multiple web pages in openHTML, CSS stylesheets cannot

easily be shared between them.

Also, the lack of a file system means that HTML documents, CSS

stylesheets, images, and other assets can only be linked through absolute

www.manaraa.com

 80

paths. This runs counter to how web projects are typically organized to rely on

relative paths.

By focusing on the code, there is less of an opportunity to learn many

other aspects of web development, including source code and server

management. Nevertheless, as the first web development tool in a broader

system of between-tool scaffolds, it provides sufficient functionality to help

users start learning web development, and meets the needs of the studies

described in the following chapters.

4.3. Pilot Study
In the spring of 2012, I organized an after-school workshop that introduced

basic web development topics through activities using the openHTML Editor.

Among the goals of the workshop were to test the performance of

openHTML in a multi-user session, identify usability issues with first-time

users, and get a general sense for how openHTML would be used. In

particular, we were interested in the issues raised when teaching younger

students to build web pages.

To organize the workshop, I partnered with a local community center that

provides an array of social services to disadvantaged families. One of their

offerings is a 10-week after-school program where local elementary school

students meet twice a week for two hours in a computer lab and learn the

basics of office applications and web browsing. Compared to the typical

www.manaraa.com

 81

subjects that are covered, building pages with HTML was a new and relatively

advanced topic for the program.

I led the workshop, while a fellow researcher was dedicated to making

observations and recording field notes, and another split time between

facilitation and note taking. In addition, I administered a pre-workshop survey

to collect basic demographic information and prior experiences, and a post-

workshop survey about impressions of the activities. The surveys were

verbally administered to students one-on-one due to their variable proficiency

with reading and writing.

4.3.1. Demographics

A total of 9 children completed the pre-workshop survey, and 7 of them, all

fifth-graders, went on to participate in the workshop. Table 4-1 provides

details about the students who took part. All names have been changed to

protect their identity.

Table 4-1: Demographics of the workshop participants.

Participant Age Gender Favorite Class
Sydney 10 Female Science
Nathan 10 Male Art
Alyssa 10 Female Computers
Kiara 11 Female Math and Computers
Gabrielle 10 Female Computers
Alisa 11 Female Math and Science
Kaliya 11 Female Reading and Math

www.manaraa.com

 82

4.3.2. Activities

The goal of the workshop was to expose the participants to the idea of

creating webpages with code, and have them add original content in the form

of paragraphs, lists, links, and images. Activities are organized around

remixing web pages. We prepared a detailed plan of activities modeled on the

Scratch Curriculum Guide [Brennan et al. 2011]. Table 4-2 gives an overview.

Table 4-2: The workshop agenda.

Part (minutes) Topic Activities

Introduction (10) The Web Create name cards
Discuss the web

Orientation (10) openHTML Create an account
Explore the features

Part 1 (10) Lists Copy favorites page
Add own favorites

Part 2 (15) Links Copy links
Add own links

Part 3 (20) Images
Copy image gallery
Pick a theme for gallery
Add images from the web

Part 4 (30) Put it all together
Copy recipe page
Add own recipes using lists,
links, and images

Wrap Up (15) Questionnaire Administer one-on-one
Others continue Part 4

4.3.3. Findings

Overall, openHTML was successful in fulfilling its role in the workshop. With

minimal orientation, students were able to start using openHTML write

HTML and create remixes of the webpages provided to them. Starting with

templates that the children could modify instead of a blank document, and

incorporating the students’ personal interests were important aspects of this

success.

www.manaraa.com

 83

Nevertheless, I identified two major opportunities to improve the design

of openHTML based on the workshop, which resulted in the implementation

of new features before the start of the next study. First, we observed that

naming conventions had a great deal of power. In particular, the random hash

strings used to generate web page names and URLs were perceived as “noise”

that diminished ownership of the page. To address this, I instead set the

default name of new web pages to “Untitled Webpage” with an option to

provide them with a custom name.

Second, although students were urged to save their code early and often, in

at least one instance a participant accidentally navigated away from the

openHTML editor and lost changes. I consider this a catastrophic event in

terms of the effect it has on student progress and motivation. Following the

workshop, I implemented changes to address this, including a more

prominent visual indicator when code is unsaved, and a warning message if

the user attempts to navigate away from the editor with unsaved changes.

4.4. Summary
This chapter reports on the initial design and development of the openHTML

editor. I outlined three principles, derived from the findings presented in

Chapter 3, which guided the design of openHTML, and reported on an after-

school web workshop that I conducted in part to pilot test openHTML.

Among the insights from field observations of the workshop were that

custom names were an important motivating feature for participants, and that

www.manaraa.com

 84

users were susceptible to navigating away from openHTML, losing unsaved

changes to their code. These issues were addressed through minor iterations

on openHTML in preparation for the study presented in the next chapter.

www.manaraa.com

 85

Chapter 5
Intention-Based Analysis of Errors in HTML and

CSS

In chapter 3, I explored the learning barriers students encounter in an

introductory web development course. By analyzing the help forums used in

the course, I was able to characterize the broad issues that students grapple

with, including coding, technological, and administrative concerns. In chapter

4, I described the design of openHTML, which aims to abstract away the

technological and administrative barriers to help students devote their

attention to the code.

This chapter describes a study that builds on this work through a detailed

investigation of the errors people make when writing HTML and CSS code.

Despite the wealth of literature on programming errors in a variety of

languages [Eisenberg and Peelle 1983; Anderson and Jeffries 1985; Spohrer

and Soloway 1986b; Pea 1986; Pea et al. 1987; Hristova et al. 2003; Robins et

al. 2006], few have applied a similar lens to HTML and CSS. Such a study

informs how social and technological systems can be designed to help

beginners overcome difficulties when learning the fundamentals of web

development. While the study presented in chapter 3 explored this to some

degree, it focused on insurmountable barriers; I did not have access to the

www.manaraa.com

 86

activity of students before they turned to the help forums, preventing me from

capturing the full scope and fine detail of errors including ones they were able

to resolve on their own. To address this gap, I conducted a lab study where I

observed participants directly as they completed basic web development tasks.

This study was guided by the following research questions.

RQ2a. What types of errors do beginners commonly make when

writing code in HTML and CSS?

RQ2b. How do beginners recover from these errors?

The rest of the chapter is organized as follows. Section 5.1 describes the study

protocol and participants. Section 5.2 provides a comprehensive account of

the errors I observed in the tasks. Finally, Section 5.3 discusses the implication

of these findings for further research and the design of openHTML.

5.1. Methods
In order to make the detailed observations necessary to understand the errors

people make while constructing web pages, I conducted a laboratory-based

study where I observed and recorded 20 participants as they completed a set

of HTML and CSS coding tasks. A think-aloud protocol was combined with

follow-up interviews, allowing me to probe the participants’ intentions and

understanding as they completed the tasks. Such elicitation methods are used

to examine the understanding of a learner and how they reason about and

solve problems [Ericsson and Simon 1993; Chi 1997]. I then used open and

www.manaraa.com

 87

axial coding processes to analyze video and screen capture data and classify

the errors.

5.1.1. Participants

To capture as broad a sample of errors as possible, I recruited participants

with a wide range of expertise in HTML and CSS, requiring only that they had

enough prior experience with HTML to follow the task instructions. I used a

variety of recruitment tactics including announcements in web development

classes, flyers posted on university campuses, and a classified ad in the web

design section of Craigslist. Participants were offered $20 for their time.

A total of 20 people, 7 female and 13 male, took part in the study. Their

ages ranged from 18 to 47 (M=24.4) and their backgrounds included digital

media, environmental science, business, and art. Two participants indicated

web design as their profession; however, interviews revealed that they

primarily used content management systems like WordPress to build websites,

and did not practice much coding. In addition to HTML and CSS, 17 of the

20 participants reported some experience in JavaScript and other

programming languages. The participants are described in Table 5-1.

www.manaraa.com

 88

Table 5-1: Participants gender, age, profession, and prior experience with HTML, CSS, and
programming languages. Prior experience is self-reported on a scale of 0 (none) to 3 (expert).

P Gender Age Profession HTML CSS Prog
1 Female 19 Student (Digital Media) �� �� �
2 Female 20 Student (Digital Media) �� �� ��
3 Male 20 Student (Computer Science) �� �� ���
4 Male 20 Student (Business) ��� ��� �
5 Male 19 Student (Information Systems) �� � �
6 Male 25 Student (Information Science) �� �� �
7 Female 22 Student (Digital Media) �� �� �
8 Male 23 Visual Effects Art ��� ��� ��
9 Male 23 Student (Digital Media) ��� ��� ���
10 Male 20 Student (Computer Science) ��� ��� ���
11 Female 29 Student (Environmental Science) � � �
12 Male 20 Student (Information Systems) ��� ��� ���
13 Male 36 Law � �
14 Male 22 Student (Information Technology) � � �
15 Male 41 Web Design � �� ��
16 Female 19 Student (Art) � �
17 Female 47 Web Design � �
18 Male 21 Student (Business) ��� ��� ��
19 Female 24 Student (Education) � �
20 Male 18 Student (Business) � � �

5.1.2. Protocol

In order to provide a consistent experience for all participants and to record

the sessions, participants were invited to a usability lab and asked to complete

a set of five coding tasks involving HTML and CSS. The tasks were preceded

with a questionnaire and brief interview that collected information on

demographics and prior experience. Participants were asked to rate their own

expertise with HTML, CSS, and any programming languages as no experience

(0), beginner (1), intermediate (2), or advanced (3).

The first iteration of openHTML was used to complete the tasks. My

design approach, which was to start with a barebones environment and follow

an iterative process to extend its functionality, made the first version of

www.manaraa.com

 89

openHTML an ideal environment for the study since it lacked the bells and

whistles of more complex editors that were irrelevant to the tasks. Moreover,

all participants were equally unfamiliar with the tool. Participants were given

an orientation with openHTML before the study began.

For each coding task, I gave participants printed instructions containing

multiple sub-goals and an image depicting the expected output of the rendered

web page. I asked them to complete tasks to the best of their ability using

whatever resources they would normally use including web searches. I

explained the think-aloud protocol and encouraged participants to vocalize

their thought processes as they completed the tasks. A maximum of 30

minutes was provided for each task, and participants were allowed to end a

task at any time. After each task, I asked follow-up questions to clarify their

understanding and intent. Sessions were video recorded. Participants averaged

approximately 38 minutes of coding activity (ranging from 13 to 57), totaling

over 12 hours of video data combined.

5.1.3. Tasks

Participants completed five tasks that involved writing or modifying HTML

and CSS. I piloted the tasks to ensure that they could be reasonably completed

in 10 to 15 minutes. The tasks were also designed to provide broad coverage

of HTML and CSS constructs, setting a low floor and steadily increasing in

sophistication. For all of the tasks, the HTML pane was seeded with

boilerplate code for the HTML5 document type declaration and html, head,

www.manaraa.com

 90

title, charset, and body tags; additional code was seeded for Task 3 requiring

the code to be extended, and Task 4 requiring three bugs to be fixed. The

tasks are summarized in Table 5-2.

Table 5-2: The coding tasks.

Task Requirements

1

Create a heading
Create a paragraph
Create an ordered list
Created an ordered sub-list

2
Embed a hyperlink
Embed an image
Hyperlink the image

3

Center the text alignment in the provided table
Set the background of the pro rows to green and the con rows to red
Set the hyperlink text color to green
Set the hyperlink text color to red on hover

4
Find and fix bug 1: broken image
Find and fix bug 2: unclosed tag
Find and fix bug 3: unmatched CSS selector

5

Create a container div
Center the container
Create a sidebar div
Position the sidebar on the right side of the container

5.1.4. Data Analysis

I worked with another researcher, Ankur Saxena, to code the video data in

three iterative rounds using the usability testing software Morae. I did not

apply a pre-determined codebook; rather, the goal was to use the coding

exercise as a way of inductively developing an inventory of errors.

In the first round of coding, every occurrence of a syntax or semantic error

was marked. In line with Youngs’ definition of programming errors [Youngs

1974], I defined errors as code written by the participant with invalid syntax,

or that resulted in actual or potential output (web page rendering) that was not

www.manaraa.com

 91

desirable according to the task or the participant’s interpretation of that task.

This definition of an error required not only the interpretation of code but of

the participant’s intent, in order to identify syntax and semantic errors. A total

of 791 errors were identified in this initial round.

Table 5-3: The coding scheme for errors.

Code Values
Level skill, rule, knowledge
Type typo, obsolete construct, css selector, etc.
Resolution resolved, unresolved, bypassed

In the next round of coding, I classified the identified errors based on the

emergent coding scheme (Table 5-3). To produce a robust classification of

errors, I examined not only the errors themselves, but also the context and

response to the errors in a process similar to axial coding from grounded

theory [Corbin and Strauss 1998] and informed by an understanding of errors

as driven by skills, rules, or knowledge deficits.

This scheme was informed by the skills-rules-knowledge framework, a

hierarchical model of human behavior organized in terms of cognitive effort

[Rasmussen 1983]. A thorough treatment of the skills-rules-knowledge

framework is provided in [Reason 1990], which informed the analysis of

cognitive breakdowns at the root of each error:

• Skill-based behaviors, such as typing, are “sensory-motor

performance[s] tak[ing] place without conscious control as smooth,

www.manaraa.com

 92

automated, and highly integrated patterns of behavior.” Errors at this

level are the result of unintended actions from physical slips,

inattention, or mode confusion. Norman [1981] offers an extended

account of errors that occur at this level.

• Rule-based behaviors are comprised of “a sequence of subroutines in a

familiar work situation... typically controlled by a stored rule or

procedure.” Rule-based behavior is guided by conscious and goal-

oriented planning. Errors here result from intentional actions driven by

the application of bad rules or the misapplication of previously good

rules to exceptional circumstances.

• Knowledge-based behaviors occur at a higher conceptual level when a

person faces an unfamiliar situation that necessitates ad-hoc

experimentation and problem solving. Errors at this level, or more

aptly “breakdowns,” result from an incomplete or inaccurate

understanding of the situation. Typically, multiple errors are made in

succession, entwined with experimentation and information searches.

In order to determine the appropriate level, I relied not only on observed

coding behavior but other cues, including the participants’ verbalizations while

coding, their reactions when errors were detected and resolved, and,

importantly, their strategies for resolving them. For instance, a web search

could be used to remember complicated syntax, suggesting rule-based

www.manaraa.com

 93

behavior, or for just-in-time learning of a broader topic [Brandt et al. 2009],

typical for trying to address a knowledge-based breakdown. Table 5-4 outlines

the heuristics that were applied during this part of coding.

Table 5-4: Heuristics used to classify errors as occurring at the skill, rule, or knowledge-based
levels of performance.

 Skill Rule Knowledge
Types of
Activity

Quick routine actions Simple if-then rules Slow information seeking

Control
Mode

Mainly by automatic
processes

Mainly by automatic
processes Conscious processes

Perception Feedforward Feedforward Feedback
Intention Unintended actions Intended actions Intended actions
Solution Indicator of existence Brief explanation Extensive learning

I developed a detailed taxonomy of error types at each of the three levels

through an inductive, data-driven process. At the skill-based level, errors

tended to be simple and arose from a mismatch between intention and action,

such as forgetting to type a semicolon. At the rule-based level, errors became

more complex, for example using an attribute that has been deprecated.

Knowledge-based level errors proved to be the most complex, for instance a

lack of understanding of the positioning model, a central aspect of web

development that determines how elements are laid out in relation to each

other on the web page. I also coded whether errors were ultimately resolved,

unresolved, or bypassed in favor of an alternative approach. The other

researcher and I reconciled disagreement through further discussion. In the

second and third rounds of analysis, I reviewed the codes with the second

researcher and made refinements where necessary.

www.manaraa.com

 94

5.2. Findings
In this section, I present the results of the analysis. I start with an overview of

the observed errors including how they related to the skills-rules-knowledge

framework. I then discuss errors at each level of the framework in more detail,

starting with an illustrative vignette and finishing with a detailed catalog of

errors by type, frequency, and resolution.

5.2.1. Overview of Errors

A total of 791 errors were identified in the analysis. Participants averaged 39.6

errors per session (including all tasks) (SD=15.0), ranging from 15 (P14) to 63

(P9). The percentage of errors they left unresolved ranged from 1.7 percent

(P3) up to 38.6 percent (P6). Breaking down the activity by task (Table 5-5)

shows that task duration and errors made was generally higher for tasks 3

and 5.

Table 5-5: Task completion time in minutes and error count for each task.

Task 1 2 3 4 5
Time
(SD)

5.42
(4.61)

5.94
(3.96)

9.40
(5.56)

6.51
(4.62)

10.95
(5.69)

Errors
(SD)

7.55
(4.75)

6.70
(4.26)

7.85
(5.44)

4.20
(4.12)

13.25
(8.16)

Based on the analysis, 70.9 percent of errors occurred at the skill-based, 16.9

percent at the rule-based, and 12.1 percent at the knowledge-based levels. The

overall percentage of errors that produced invalid syntax was 69.2 percent, and

this was remarkably consistent across skill-based (67.3 percent), rule-based

(70.1 percent), and knowledge-based errors (69.8 percent).

www.manaraa.com

 95

Overall, 83.9 percent of errors were resolved, although this is heavily

skewed by the number of skill-based errors that were made. A scant 4.3

percent of skill-based errors were ultimately unresolved, while 39.6 percent of

rule-based and 52.1 percent of knowledge-based remained so. This is depicted

in Figure 5-1.

Figure 5-1: Error count and resolution for skill-based, rule-based, and knowledge-based
errors.

The number of skill-based errors far exceeded rule- and knowledge-based

errors, but participants resolved the vast majority of them by the end of the

task. In comparison, knowledge-based errors were infrequent, but were

accompanied with substantial episodes of problem solving and often

unresolved. These findings align with what has been observed in other

domains [Reason 1990] and reflect qualitative differences in the nature of the

errors. I dive into these differences in the following sections.

0	

100	

200	

300	

400	

500	

600	

Skill	 Rule	 Knowledge	

Er
ro
r	
Co
un
t	

Resolved	

Unresolved	

www.manaraa.com

 96

5.2.2. Skill-Based Errors

5.2.2.1. A Vignette

Participant 15, a 41-year-old web designer, is working on embedding an image

in Task 2, which instructs that he include an alt attribute that specifies

alternate text when the image cannot be found. The correct code should

resemble the following:

<img src="http://constitutioncenter.org/images/ui/logo-
ncc.gif" alt="My Image" />

However, Participant 15 forgets the opening quote in the alt attribute’s value.

<img src="http://constitutioncenter.org/images/ui/logo-
ncc.gif" alt="My Image />

He realizes something is amiss when the image does not render as expected in

the preview pane. After carefully examining the code for a minute, scanning it

repeatedly, he finally spots the source of the error, exclaiming, “Oh! That’s it.”

Despite successfully enclosing values with quotes numerous times before and

after this instance, he makes a skill-based error here, whether due to cognitive

overload, inattention, or the slip of a finger. In this case, merely becoming

aware of the missing quotation error was sufficient information to fix it.

5.2.2.2. Classification

At the skill-based level, errors were caused by unintentional actions, such as a

mental or physical slip, during highly routine activities. Six types of error were

observed at this level. They include typographical errors, forgetting to close

www.manaraa.com

 97

paired constructs, forgetting a delimiter, accidentally mixing HTML and CSS

syntax due to mode switches, confusing semantically similar constructs such as

titles and headers, and misplacing code in a location other than intended.

Skill-based errors could be observed when there was a mismatch between

a participant’s intentions and their actions. Participants demonstrated that they

understood how to complete a task, either by successfully completing similar

tasks previously or vocalizing their intent. However, they did not carry out the

action as intended due to their attention being pulled in other directions.

Participants were generally capable of resolving these errors if they

recognized they had been made. Furthermore, the majority of them not only

resulted in syntax errors but had a detrimental impact on the rendered

webpage, making their presence highly salient. The combination of these two

factors resulted in a high rate of resolution for skill-based errors.

The lone exception was unclosed pair errors, more than half of which were

left unresolved. This can be explained by the fact that unlike other skill-based

errors, they had little impact on the rendered output of a webpage despite

producing invalid syntax. Nevertheless, openHTML’s syntax highlighting and

automatic nesting, which would behave unexpectedly in the presence of

unclosed pair errors, tipped off some observant participants that an error had

been made.

www.manaraa.com

 98

Table 5-6: Skill-based error types.

Error Types Description Examples Total Unresolved
Typographical
Errors

Physical slips in the
typing process, as
with tags, properties,
and values

</blcokquote>
bacground-color
width: 100ps;

495 7

Unclosed
Pairs

Forgetting to close
paired constructs or
characters, such as
tags, quotes,or
braces

<h1>Note

a { color: red;

27 15

Missing
Delimiter

Forgetting other
symbols that delimit
data, such as
semicolons in CSS
rules and the hash
symbol in hex values

h1 {
 font-size: 20px
 color: 0000FF;
}

6 1

Mixed
Languages

Accidentally applying
HTML syntax to
CSS, or vice versa

div { color=blue; }
<div color=red;>

12 1

Confused
Similar
Constructs

Mixing up
semantically similar
constructs

title & h1
color & background-color
class & ID

17 0

Misplaced
Code

Accidentally pasting
code or typing in the
wrong location

4 0

 561 24

5.2.3. Rule-Based Errors

5.2.3.1. A Vignette

Participant 5, a 19-year-old college student, is progressing with Task 5, which

requires him to create multiple div elements in HTML and style them using

CSS. To this end, he assigns the elements classes in HTML and selects those

classes in CSS. These are skills that he successfully used earlier to complete

Task 4. He sets the class of one div to “2” and assigns the class a blue

background color. To his surprise, the div does not change color. Though he

does not realize it, the cause of this error is that class names cannot begin with

a number.

www.manaraa.com

 99

This episode is illustrative of rule-based errors. Participant 5 is familiar

with the general rule for how to set classes in HTML, and how to select them

in CSS. But he comes up against an unfamiliar exception in how classes can be

named. Although he is able to overcome this, he expends significant time and

effort to do so, and in the end may still not fully comprehend the source of

the error. In this case, the simple elaboration of a known rule is likely

sufficient for resolving the error.

5.2.3.2. Classification

At the rule-based level, errors occurred during relatively routine activities as

with skill-based errors. However, they were caused by the intentional and

consistent, but faulty, use of familiar rules. Rule-based errors were most

diverse in their types, which makes sense given they occur when encountering

all manner of edge cases where more general rules start to break down.

Particularly at this level, the error types are not comprehensive, but simply

representative of the errors I observed in our study. I expect that countless

others can be added to this list, and that the list is likely to change as standards

evolve.

Common causes for rule-based errors included using outdated elements

from earlier versions of HTML, extending the general markup syntax to void

elements, and failing to recognize constraints in how certain elements like

inline, list, or style elements can be placed in the code.

www.manaraa.com

 100

Compared to skill-based errors, rule-based errors had a greater tendency to

be unresolved. They often resulted in invalid syntax and were an opportunity

for participants to refine their understanding of the edge cases and produce

more robust code. Despite this, errors rendered properly in the output, likely

leading to an assumption that all was well with their code.

Table 5-7: Rule-based error types.

Error Types Description Examples Total Unresolved
Obsolete
Construct

Using elements,
attributes, and
properties that once
were valid but are no
longer support

<center></center>

12 9

Invalid
Construct

Using elements,
attributes, or
properties that do not
exist

<sidebar></sidebar> 12 3

Valid But
Unsuitable
Construct

Using a familiar but
cumbersome element,
instead of a simpler,
more suitable one

<p>1. First item</p>
<p>2. Second item</p>

3 1

Misidentified
Construct

Using the wrong
name to reference a
construct

font-color instead of color
align instead of text-align

24 6

Hyperlink
Concepts

Confusing the
hyperlink content and
destination

http://google.com

7 0

Resource
Paths

Errors in
constructing the path
to a resource such as
an image or web page

http:icer-conference.org
absolute vs. relative paths

1 0

Lists and List
Items

Giving a list element
a child other than a
list item

 <p>Item one</p>

13 11

Ordered List
Numbering

Manually numbering
ordered list items,
which are
automatically
numbered

 1. Item one
 2. Item two

9 3

Void Element
Syntax

Errors with empty
elements, which are
solitary instead of
paired like typical
elements

</ br> instead of

11 9

Style Element
Placement

Using style elements
outside of head
without the scoped
attribute

<body>
 <style>
 h1 {font-color: red;}
 </style>

3 2

www.manaraa.com

 101

Inline Style
Syntax

Syntax errors while
writing CSS code
inline with HTML

<h1 color: red;>Header</h1> 6 1

Color Hex
Values

Misformatting
hexadecimal values,
which require a hash
and 3 or 6 digits

color: 0000FF; 2 0

Missing Units Missing required
units on CSS values margin: 40; 3 2

Naming
Identifiers

Starting a class or ID
name with a numeral
or other invalid
character

<div class="1"></div> 3 1

Mistargeted
Style

Applying style to
wrong element due to
a logic error

table {
 text-align: center;
}

4 0

Overriding
Rules

Inadvertently
overriding rules due
to the CSS cascade

a:hover {
 color: red;
}

a:link {
 color: blue;
}

1 0

Invisible
Elements

Missing content,
height, border, or
background, causing
an element to not be
visible as expected

<div style="width:
500px;"></div>

8 2

Centering
Block
Elements

Inability to center
block elements,
which requires setting
a width, and left and
right margins to auto

<div
align="center">Not</div>

div {
 text-align: center;
}

4 1

Collapsing
Margins

Undesired collapsing
of vertical margins in
adjacent or nested
elements

<div style="margin: 10px;">
</div>

<div style="margin: 20px;">
</div>

3 2

Non-unique
IDs

Using an ID multiple
times in a document

<div id="section1">
 <h1 id="section1">1</h1>
</div>

1 0

Comment
Syntax

Syntax errors for
comments in HTML
and CSS

// HTML comment
/ CSS comment

4 0

 134 53

www.manaraa.com

 102

5.2.4. Knowledge-Based Errors

5.2.4.1. A Vignette

In Task 3, Participant 20 is asked to style the text in each cell of the provided

table by aligning it to the right. He begins by opening up a website he used in

an earlier task to reference the syntax of common tags. On the website is a

section called “Alignment tags,” which includes the following deprecated code

for aligning text to the right.

<P ALIGN=Right>your text

He copies the code, pastes it into his own, and modifies it to create the

following:

<table><ALIGN=Right> <tr><td>Pro: Low Unemployment</td></tr>

Observing that this code doesn’t have the desired effect, he tinkers with the

placement of the align code, moving it inside the td element without any

success. He moves it again, this time between tr and td tags. It still doesn’t

work.

Participant 5 searches the web with a query for “align right table”. The top

result is a question and answer site, where he spots code using the align

attribute:

<tr><td>..</td><td align='right'>10.00</td></tr>

He copies and pastes part of this HTML snippet into the CSS pane, resulting

in the following code.

www.manaraa.com

 103

table { align='right'
}

The style is still not taking effect, so Participant 20 spends the next minute

carefully inspecting his code. He adds dummy text between the tr and td tags,

confirming that it has some effect on the live preview before quickly deleting

it. Next, he conducts another query for “css align right table” and scans three

different pages. He comments to the researcher, as he points to the code he

had added to the CSS pane, “It said to put this in here. Almost exactly like

that.” He continues with several more web searches, using general queries like

“using css” and “apply css attribute”. After much tinkering with the code,

Participant 20 gives up six minutes after he started moves on to the next part

of the task.

Participant 20’s struggles with Task 3 involved the fundamentals of HTML

and CSS, and are representative of errors at the knowledge-based level. He has

significant knowledge gaps in the structure of an HTML tag, demonstrates

persistent confusion between HTML and CSS code, and engages in lengthy

web searches. At this level, resolution requires substantial learning.

5.2.4.2. Classification

At the knowledge-based level, breakdowns were caused by a severe deficit of

knowledge relevant to completing a task. During these breakdowns,

participants consciously engaged in just-in-time learning, characterized by

extended cycles of conducting web searches and tinkering with the code. In

www.manaraa.com

 104

more than half of the cases, participants were not able to resolve these

breakdowns due to their scope and the time limits of the study.

16 of the 20 participants made at least one knowledge-based error, but

they tended to be concentrated in certain participants. Among the four

participants who had 10 or more knowledge-based errors, three (P11, P13,

P20) reported minimal prior experience that was reflected in their

performance. However, one of these participants (P15) reported intermediate

experience with CSS and programming languages, which may indicate the

difficulty of beginners in assessing their own ability as well as the notion that

expertise does not always follow experience. Interestingly, there was no

correlation between the number of knowledge-based errors made and either

skill or rule-based errors, and these four participants were in the middle of the

pack for the other types of errors.

Knowledge-based errors made up only a few types, but related to central

models governing HTML and CSS that broadly integrated many topics.

HTML fundamentals and CSS fundamentals, which relate to the basic syntax

and semantics of the two languages, were most common, reflecting the

expertise of participants and the nature of the tasks. These breakdowns were

usually represented by basic syntax errors. On the other hand, during the other

knowledge-based breakdowns, semantic errors tended to prevail.

www.manaraa.com

 105

Table 5-8: Knowledge-based error types.

Error Types Description Examples Total Unresolved
HTML
Foundations

The basic syntax
and semantics of
HTML elements,
including tags,
attributes, and
values

<align="right">Sidebar</align> 39 17

CSS
Foundations

The basic syntax
and semantics of
CSS rule sets,
including basic
selectors,
properties, and
values

div: color: red; 26 12

CSS Selectors Advanced or
compound CSS
selectors

.div > #element 23 15

Box Model Styling the
dimensions of
elements using
properties of the
box model

width, height, padding,
border, margin

2 1

Positioning
Model

Styling the position
of an element
within the
document’s flow

position, float, top, right,
bottom, left, display

6 5

 96 50

5.3. Discussion
In the following sections, I discuss the implications of my findings in terms of

web development education and designing tools for beginners.

5.3.1. Triaging Errors

This study maps the landscape of errors people commonly make in HTML

and CSS. In addition to observing how the errors manifest in the code, I was

able to analyze the cognitive sources of the errors by applying the skills-rules-

knowledge framework. Considering the participants’ understanding and intent

in this way suggests the different types of support needed to help overcome

www.manaraa.com

 106

them. Earlier studies have similarly accounted for intention when diagnosing

novice programmer errors [Johnson and Soloway 1984] and developing

plausible accounts for the origin of bugs [Spohrer and Soloway 1986b].

At the knowledge-based level, I identified several broad areas fundamental

to web development with which participants struggled. Participants were

conscious of the breakdowns they were experiencing and engaged in extensive

episodes of web searches, tinkering, and other deliberate actions to resolve

them. The topics that knowledge-based errors related to suggest different

conceptual plateaus on which people are operating. Prior to HTML and CSS

foundations, people have only acquired bits of meaning about unconnected

code. Upon learning these foundations, they are able to construct the atomic

building blocks of web pages: HTML elements and CSS rule sets. Through

CSS selectors, they learn how CSS styles can target HTML elements. Finally,

through the box and positioning models, they learn how elements and styles

can be combined to construct sophisticated web pages.

At the rule-based level, errors give insight into the misconceptions people

have about HTML and CSS (Table 5-7). In many cases, the participants were

not aware that they were making rule-based errors. At this level, participants

applied rules with intention that, while producing errors, accorded with their

state of knowledge. These are rules that have served them effectively in the

past, but were not workable in the exceptional circumstances or changing

contexts. Within the CS education domain, novices’ misconceptions have

www.manaraa.com

 107

been studied in a variety of contexts for their role in generating programming

errors [Bayman and Mayer 1983; Bonar and Soloway 1985; Sanders and

Thomas 2007; Kaczmarczyk et al. 2010].

Finally, skill-based errors were caused by physical or mental slips. Though

seemingly minor, skill-based errors sometimes cascaded into other errors and

resisted correction because participants overlooked them and directed their

debugging efforts at aspects of the code with which they were less familiar.

Skill-based errors are unintentional, requiring information about their

existence and location. Rule-based errors require relatively simple explanations

of the errors. At the knowledge-based level, substantial learning involving

multiple topics is needed. Errors at each level are best addressed by different

approaches, due to differences in intentionality and knowledge at their root.

5.3.2. Feedback that Harms and Helps Understanding

This study gives insight into how web development tools can be designed to

provide better support for detecting and fixing errors. At all levels, feedback

provided by the web editor’s live preview panel was observed as instrumental

in detecting and resolving errors, complemented with subtle cues from the

syntax highlighting and automatic indentation in the code panes. As

participants typed their code, they were able to immediately test it as the page

rendered in real time.

However, as the primary mode of feedback, the live preview could also be

detrimental. Browsers are tolerant of errors, and do their best to render

www.manaraa.com

 108

HTML and CSS code even when it is riddled with bugs. When a beginner

writes code that has many errors but still renders as desired, they receive

positive feedback. The errors remain latent and unresolved, reinforcing faulty

understandings that can become difficult to later unlearn. In several cases,

code rendered as intended in the preview pane despite the presence of an

error. In other cases, similar errors caused a problem with the rendering,

leading to inconsistent feedback.

The analysis revealed that approximately 70 percent of errors that

participants made at all three levels of behavior produced syntax errors. This

suggests that current HTML and CSS validators are capable of detecting that

an error has been made in the majority of cases. However, the degree to which

an error message reflects the source of misunderstanding and highlights a path

forward can vary considerably. For example, in the event that someone has

forgotten to close an HTML element, the validator might appropriately alert

that the element is unclosed. In other cases, syntax errors may be symptomatic

of a more distant or deeper difficulty. Nevertheless, these cases may also

present an opportunity to make inferences about the source of difficulties

based on the pattern of errors over time.

Beyond syntax errors, linters apply heuristics that identify common

semantic errors that a validator might not catch. For instance, the uniqueness

heuristic [Ko and Wobbrock 2010] states that an identifier, such as an HTML

ID or class, that occurs only once in the code is likely symptomatic of an

www.manaraa.com

 109

error. The taxonomy of HTML and CSS errors suggests a number of

additional warning signs for semantic errors that can be detected in the code.

Examples include an element that is assigned visual styles but that is not

visible due to having a height of zero, or a border that has been assigned a

width and color but does not display due to the style type being unspecified.

Many editors are already adept at helping with skill-based errors. When

knowledge-based breakdowns occur however, a validator or linter will often

reply with a flood of error messages. This feedback may be counter-

productive, overwhelming, intimidating, or otherwise discouraging beginners.

Instead, they may be best served by being directed to substantive learning

resources. Where validators may have the greatest impact is in providing

support for rule-based errors. With these errors, the learner already has a

significant base of knowledge, and if properly designed, can learn to overcome

them with relatively little guidance.

5.3.3. Interpreting Errors in Natural Settings

In this study, I directly observed the coding behavior of participants, gaining a

richer view of coding activity than would have been possible through code

inspection or retrospective interviews. Changes in the code were accompanied

with verbal articulations, facial expressions, gaze changes, web searches, and

even different postures, all of which contributed to interpreting and classifying

the errors that were made.

www.manaraa.com

 110

However, there were significant tradeoffs with this approach. The data

collection and analysis was time consuming, limiting the number of

participants and the diversity of the coding activities could be observed. There

is also the question of ecological validity—that is, how closely the coding

activity of a diverse set of participants in one-hour sessions correlates to what

may be observed among students during a course or other authentic learning

experience. Additionally, my presence in observing these tasks and facilitating

the think-aloud protocol is likely to influence findings; in computing tasks

completed in the presence of another person, gender has been identified as a

significant factor for the level of reported stress and performance [Huff 2002].

One avenue for overcoming these limitations is by remotely tracking the

coding activity of students as they progress through a web development

course. In addition to the coding activity itself, this study lends support for

syntax errors as a window into many of the difficulties that students face when

learning HTML and CSS. Novel heuristics could also be devised for detecting

semantic errors in the code. Lastly, as demonstrated in an earlier study [Brandt

et al. 2010], help-seeking activity such as web queries can also be remotely

logged and provide data that reflects the mindset of the learner.

5.4. Summary
In this chapter, I have reported on a lab study of errors that people make

when writing HTML and CSS code. Over 12 hours of video data was

www.manaraa.com

 111

recorded as the participants completed five coding tasks and analyzed to

identify the errors they made.

First, this study contributes a catalogue of errors (RQ1). A total of 791

errors were observed and classified into 32 categories, providing an empirical

basis for common HTML and CSS errors. This is one of the first and most

substantial investigations of errors in basic web development to date. I also

examined the cognitive source of these errors. By using a think-aloud protocol

and applying the skills-rules-knowledge framework, I was able to probe the

intent of the participants’ actions. From this analysis, I found that skill-based

errors, characterized by unintentional actions such as typographical errors or

physical slips, occurred with greatest frequency (70.9 percent of all errors).

Rule-based errors, which stemmed from the intentional application of

misconceptions, were less common (16.9 percent). Knowledge-based errors

(12.1 percent), which related to severe knowledge gaps, were least common of

all.

Finally, I analyzed the resolution of these errors (RQ2). I found that the

vast majority of skill-based errors were resolved (95.7 percent). On the other

hand, participants had less success in fixing rule-based (60.4 percent) and

knowledge-based (47.9 percent) errors. Although knowledge-based

breakdowns were most severe in their scope, participants were conscious of

the difficulties they were having and engaged in deliberate information

www.manaraa.com

 112

gathering, experimentation, and problem solving to address them. In contrast,

participants were often unaware of the rule-based errors they had committed.

www.manaraa.com

 113

Chapter 6
Analysis of Syntax Errors in a

Web Development Course

In this chapter, I turn my attention to active students in an introductory web

development course. These students are at a critical stage in their development

of computational literacy, often possessing at most a rudimentary

understanding of computation and the web through their experience as end

users, but with an opportunity to engage in deeper learning.

One aspect of computational literacy that many students in a web

development course encounter for the first time is learning to read and write

code. Novices often have considerable difficulty with the exacting nature of

formal computing languages, and juggling the precise syntax of a new language

with higher-level concerns about semantics and design. Yet few studies have

examined such difficulties with the HTML and CSS, and fewer yet have done

so in the context of students encountering these languages for the first time. A

better understanding of the errors students make using HTML and CSS

during a course and how they resolve them can inform educators and tool

designers, particularly in formal learning contexts. This study explores this

with the following research questions:

www.manaraa.com

 114

RQ2a. What types of HTML and CSS syntax errors do students

commonly make as they progress in an introductory web

development course?

RQ2b. How well do students resolve these HTML and CSS syntax

errors?

RQ2c. What role does validation play in resolving HTML and CSS

syntax errors?

RQ3. What computational concepts and skills do beginners engage

with when learning HTML and CSS?

This study builds on the work described in the previous chapter in several

ways. By examining the initial weeks of an introductory web development

course, I was able to observe beginners during their first sustained experiences

with HTML and CSS, rather than people with mixed levels of experience in a

single session. In the learning sciences, microgenetic studies on the order of

weeks have proven useful for providing an in-depth view of the dynamic

process of learning [Siegler 2006]. This study focuses primarily on syntax

errors, which can be readily detected by existing validators and which I found

in the previous study to be present in the majority of coding difficulties.

Methodologically speaking, I made use of remote log analysis by

instrumenting openHTML and deploying it in a course. Compared to direct

observation, some of the rich context is lost. The data is often at a much

www.manaraa.com

 115

lower level (e.g., keystrokes) and voluminous, requiring analysis techniques to

interpret higher-level patterns within them [Guzdial 1993]. However, this

approach scales more effectively, making it possible to analyze the coding

activity of more students, inside and outside of the classroom, for greater

lengths of time. Findings from this approach can also reduce observer bias

and hold greater ecological validity. Finally, a remote approach has direct

applications for the design of data-driven web development tools and online

learning systems.

The chapter is organized as follows. Section 6.1 describes the methods

used in this study, including a description of the course, demographics,

iterations on the design of openHTML, and the study design. Section 6.2

reports on my findings. Finally, Section 6.3 discusses the implication of these

findings for further research and design.

6.1. Methods

6.1.1. Course Description

This study was conducted during the Fall 2012 and Spring 2013 semesters of a

web development course for undergraduate college students. The course is

offered by a mid-sized private New England university and introduces the

fundamentals of frontend web development. The course was chosen for the

study due to the teacher’s commitment to adopt openHTML for a significant

part of it. Both general education students and CS majors can take the course,

www.manaraa.com

 116

either as a standalone or toward an undergraduate major or minor in web

design and development. The course draws many non-CS students majoring in

graphic design, audio engineering, or the humanities. Demographic details for

the participants follow in Section 6.1.4.

By the end of the course, students were expected to be able to design and

implement basic websites using HTML, CSS, and a small amount of

JavaScript. Students were also taught to follow a systematic, user-centered

design process and author code that complies with web standards. Although

minor adjustments were made between the two semesters, Table 6-1 shows a

representative schedule with topics and assessments organized by week.

Table 6-1: The weekly schedule of topics and assessments for the course.

Week Topics Assessments
1 Internet and web basics
2 Structural basics Lab 0
3 Structural basics, links Lab 1, Lab 2,
4 Introduction to CSS, visual elements, and graphics Lab 3, Assignment 1
5 Wireframing, mockups, web design best practices Assignment 2
6 More CSS, page layouts Assignment 3
7 Page layouts, uploading to servers Assignment 4

Begin Project 1
8 Midterm Exam
9 User-centered design, Usability testing Project 1 Due
10 HTML5 structural elements, tables Begin Project 2
11 Designing navigation, sitemaps, forms
12 Media, interactivity, and advanced selectors Assignment 5
13 JavaScript basics, jQuery
14 Accessibility evaluation
15 Publishing, hosting, and search engine optimization
16 Final Exam, Presentations Project 2 Due

The teacher had a large hand in designing the course, which includes activities

of varying scope. Labs were small coding tasks to be completed primarily in

class. Assignments were mid-sized homework based on end-of chapter

www.manaraa.com

 117

projects in the textbook [Felke-Morris 2012] (e.g., creating web pages with

fully fleshed style and content). Two projects, a personal web portfolio and

site redesign, consisted of multiple components and spanned several weeks.

Lastly, midterm and final exams were administered.

Relevant to this study, Assignments 1 and 2 required students to test their

code and ensure it passed HTML and CSS validation. The World Wide Web

Consortium (W3C), the governing standards organization of the web, outlines

the benefits of validation3, including that it:

• Teaches good practices for beginners and students by helping them spot

mistakes and introducing broader quality concepts such as accessibility.

• Guards against errors that may not be handled consistently or gracefully

across current and future platforms.

• Signals quality and whether the code is clean and well formed, or quickly

hacked together.

Failure to pass validation resulted in a maximum 10 percent penalty for the

assignments.

In previous semesters, students completed all activities using Aptana

Studio, a full-featured integrated development environment based on Eclipse.

For this study, activities from the first five weeks of the course were selected

and adapted to use openHTML by the teacher. These activities were chosen

because they mostly involved the creation of individual web pages rather than

3 http://validator.w3.org/docs/why.html

www.manaraa.com

 118

multi-page sites and did not require the use of JavaScript. They were modified

to work around some of the limitations of openHTML. The remaining

assessments were completed with Aptana Studio as in previous terms. Table

6-2 provides descriptions of the activities that were used in this study.

Table 6-2: A description of the activities used in this study.

Assessment Description

Lab 0
Create a web page with information about what you
did during the last break, using basic HTML tags
such as title, header, paragraph, and blockquote.

Lab 1 Create a to-do list using an ordered or unordered list
as well as other basic HTML tags.

Lab 2 Copy the web page created in Lab 1 and add a
section with your favorite links.

Lab 3
Copy a previously created web page and add an
image. Also use CSS to position the image and add a
background image to the web page.

Assignment 1
Create a resort homepage with a site header,
navigation menu, content area, and footer using
HTML.

Assignment 2

Copy the resort homepage from Assignment 1 to
create an index and a subpage. Use a definition list
in the subpage and use CSS to style the text and
background colors. Link the two pages together.

6.1.2. Iterating on openHTML

As previously mentioned, I have taken a design-based research approach

[Barab and Squire 2004] to designing openHTML by iteratively developing

new features, deploying them in classes, workshops and other settings, and

evaluating their impact. The two semesters in this study coincide with two

rounds of this iterative design process. In the first semester, the design of

openHTML was largely unchanged from the study presented in the previous

chapter, allowing me to evaluate its design in a formal course setting. In the

second semester, several features were added to provide greater utility in a

www.manaraa.com

 119

formal learning context. These features were designed to give additional

support multiple stakeholders, including teachers, students, and researchers.

One of the features necessitated by the shift from a laboratory to an

instructional setting was a way for teachers to access their student web pages

for evaluation. While previous iterations of openHTML allowed students to

share a direct link to a web page with the instructor, I was motivated to design

a more efficient way for teachers to access these assignments based on

informal feedback from the teacher. For Spring 2013, I created a course view

that presents the teacher with a list of accounts. Upon selecting an account,

the teacher is given direct access to that account’s webpages. The teacher is

also provided with a download option, which allows them to archive all

revisions of a webpage for record keeping.

I also instrumented openHTML with a replayer that records changes to

the HTML and CSS panes at the keystroke level, logs user actions such as

saving and validating web pages, and plays back coding sessions (Figure 6-1).

This feature is preceded by a number of tools that gather snapshots of

programming activity and visualize them, as reviewed in [Heinonen et al.

2014]. The openHTML replayer provided a means to access student activity,

given that direct observation was not possible: I was geographically remote

from the class, and much of the activity occurred outside of classroom

anyway.

www.manaraa.com

 120

Figure 6-1: The openHTML replayer playing back a previously logged coding session.

In week 3 of the second term, HTML and CSS validators were integrated with

openHTML for use with Assignments 1 and 2 (Figure 6-2.) By selecting these

options in openHTML, students were able to validate their current webpage’s

HTML or CSS code, opening a new browser tab that listed the syntax errors

that were detected in the code. The validators make use of the markup

validation service APIs provided by the W3C.

While students in the previous term were also required to have their

assignments pass validation, this involved visiting an external site, copying the

code from openHTML, and pasting it into the external validator. The teacher

reported that this was a cumbersome process for students. It also prevented

www.manaraa.com

 121

me from tracking their validation attempts, which I recognized as valuable

data for interpreting coding activity that demarcated writing and testing code.

Integrating a validation feature addressed both of these issues.

Figure 6-2: The openHTML validator feature, with an example error message.

6.1.3. Study Design

In this study, I performed a log analysis of the HTML and CSS coding activity

of all students in the course. In most web development courses, only the

students’ end products—that is, the submitted version—is available to be

assessed by instructors; similarly, much of the action that occurs when

students learn web development is “researcher distant” — not amenable to

www.manaraa.com

 122

direct observation [Fincher et al. 2011]. However, I instrumented openHTML

to log each saved revision of each project, providing snapshots of the

assignments at varying levels of completion. Because openHTML was used

for both in-class labs and homework assignments, this gave me a view into

development process of students beyond the classroom. For the Spring 2013

study, even finer-grained logging was implemented, granting a keystroke-level

view of students’ coding activity so that I could inspect how HTML and CSS

validation was used to detect and resolve errors. The analysis was informed by

an earlier study of compilation behavior in introductory programming courses

[Jadud 2006], which described the editing and compiling behavior of students

learning Java and catalogued the most common compilation errors.

In the first part of the log analysis, which was conducted for both terms of

the course, I examined the unresolved syntax errors present in the final

version of the students’ code. They represent errors that students did not

detect, or even after validation, were unable to resolve, and likely indicate

substantial difficulties given the stakes and the available resources. First,

passing validation was an explicit requirement of these activities, and any

errors remaining in their submissions negatively impacted their grades.

Second, students were given several days to complete each activity, including

the labs, and had access to the web and other resources to assist them.

To identify and analyze syntax errors, I passed student code through the

HTML and CSS validators and cataloged the error messages that were

www.manaraa.com

 123

generated. Mentions of specific elements, attributes, or values were then

replaced with placeholders, allowing similar error messages to be combined as

of the same error type. For example, two error messages reported by the

HTML validator were “Element h1 not allowed as child of element span in

this context” and “Element dt not allowed as child of element body in this

context”. Both were grouped into the “Element Y not allowed as child of

element X in this context” error type.

Following this process, I examined the error types along two dimensions:

• Frequency: Operationalized as the total count of each error type, this

measures the most common unresolved errors in the course.

• Prevalence: Operationalized as the proportion of students making a type

of error at least once, this measures the unresolved errors that affected the

most students in the course.

I also analyzed the error messages by tallying mentions of language constructs

in the error messages in order to uncover the elements, properties, etc. that

were most problematic for students. This provides insight into the

circumstances in which the errors were made.

In the second part of the log analysis, I examined snapshots of the

students’ code each time they validated their code. The assumption is that

during validation attempts, students became aware of bugs present in their

code and were making an effort to resolve them. This analysis reveals all of

the errors that students encountered rather than only the ones that were

www.manaraa.com

 124

unresolved. It also identifies the errors that recurred in multiple validations

and were particularly intractable, whether students were having difficulty

resolving the same errors or were repeating similar ones. Along with frequency

and prevalence, I analyzed the errors along two additional dimensions:

• Recurrence: Operationalized as the number of consecutive validations

for which an error persisted, this measures how deeply errors affected

students.

• Resolution: Operationalized by comparing the errors found during

validation with the ones that were still present in the final submissions,

this measures how successful students were in correcting errors.

The second part of the analysis was limited to Assignments 1 and 2 in the

Spring 2013 term when the validator feature was added to openHTML.

6.1.4. Participants

The log analysis included the work of 23 students (9 in Fall 2013 and 14 in

Spring 2013). 12 of these students (4 female, 8 male) agreed to interviews

about their experiences with web development and programming prior to the

course, which has been shown to predict the success of non-majors in learning

to program [Wiedenbeck 2005]. Interviews were conducted in the first week

of the course for the Spring 2013 term and near the end of the course for the

Fall 2012 term due to scheduling constraints.

The interview participants averaged 21 years of age and ranged from the

first to fourth year of their university program. Students were pursuing a

www.manaraa.com

 125

variety of majors, including web design and development, computer science,

audio engineering, communications, and business. The course was a

requirement for some and elective for others. Two of the participants, P9 and

P11, withdrew from the course partway through. Data they submitted before

they dropped the course were included in the analysis. Demographic data is

provided in Table 6-3.

Table 6-3: Demographic data for the interview participants.

Code Age Gender Major Term HTML CSS JS
P1 20 Female Graphic Design Fall 2012 � �
P2 20 Female Web Design & Development Fall 2012 � �
P3 19 Female Web Design & Development Fall 2012 �� ��
P4 19 Male Computer Science Spring 2013 � �
P5 19 Male Audio Engineering Spring 2013 �� �
P6 21 Male Audio Engineering Spring 2013 � � �
P7 21 Female Biology Spring 2013 �� � ��
P8 24 Male Computer Science Spring 2013 � � �
P9 19 Male Audio Engineering Spring 2013 �� � ��
P10 21 Male Communications Spring 2013 �� �� �
P11 28 Male Communications Spring 2013 � � �
P12 19 Male Business Spring 2013 �� � �

I was surprised to find that all of the participants interviewed had experience

with HTML before the course. Students reported their level of prior

experience with HTML, CSS, and JavaScript as either none (0), beginner (1),

intermediate (2), or expert (3). All participants indicated that they had at least

beginner experience in HTML, with an average rating of 1.50 (SD = 0.52).

CSS and JavaScript were less familiar, with a mean of 1.17 (SD = 0.39) and

0.75 (SD = 0.75) respectively.

These earlier experiences tended to be limited, and students rarely recalled

more than a few basic HTML elements from them. Nevertheless, they

www.manaraa.com

 126

expressed that these experiences were beneficial, allowing them to relate new

information to knowledge.

“...I was dealing with code. I didn’t realize that’s what I was

doing then, but now, like when we learned a couple of HTML

things, I was like oh, I knew that... It came in handy. I guess just

like giving me confidence with things, like we would learn

something and it wasn’t totally foreign. I’d just kind of know

what he [the teacher] was talking about.” (P1)

Only two students reported taking another web development course before

this course. Instead, students were primarily exposed to HTML, CSS, and

JavaScript through informal activities on popular web services.

“I think definitely the first time I ever used HTML was just for

like having MySpace and I wanted a little bit more creative

control, so I just kind of like learned. I knew a basic set of

elements.” (P6)

Several students reported learning basic HTML tags and CSS styles in order to

customize profiles on social networking sites like MySpace, modify templates

on blogging services Tumblr and WordPress, and create attention-grabbing

posts on the classified advertising site Craigslist.

www.manaraa.com

 127

In their prior experiences, students generally took a more opportunistic

approach to web development [Brandt et al. 2009], engaging in just-in-time

learning to tweak existing code and personalize their content. They relied on

web searches to find relevant information and snippets of code, which they

often reused through trial-and- error without a full understanding, for

example:

“I looked up things on different web browsers and it was kind

of very much like copy and paste code work. I didn’t really

understand what I was doing, but I understood that I could use

those things and just change the values to whatever variables I

needed.” (P6)

Students indicated that they were often able to accomplish their immediate

goals, but due to this reactive approach to learning, did not learn more

fundamental concepts that would have enabled them to connect their

experiences and develop a deeper understanding of the web and coding.

Instead, they were on the path to developing “pockets of expertise” similar to

many informal and even professional web developers [Rosson et al. 2004;

Dorn and Guzdial 2010b].

www.manaraa.com

 128

6.2. Findings

6.2.1. Unresolved Errors

In this section, I report on the HTML and CSS syntax errors students were

unable to resolve in their assessments. I start with an overview of the errors,

and then discuss their relation to two concepts—nesting and parent-child

rules, and how that changed as students progressed in the course.

6.2.1.1. Overview

A total of 382 unresolved syntax errors were found in the lab and assignment

submissions. The average number of unresolved errors each student had was

16.6 (SD=18.4), ranging from 4 students who had no unresolved errors in

their submissions to one student who had the maximum of 63. Figure 6-3

shows the distribution of unresolved errors among students.

Most of the errors related to HTML (97.4%). This is likely a product of

the topics covered in the early part of the course when the log data was

collected, rather than a generalizable proportion of HTML and CSS errors in

an entire introductory course.

www.manaraa.com

 129

Figure 6-3: The number of unresolved errors per student. Students from Fall 2012 are in red
and students from Spring 2013 in blue. All four students without any unresolved errors were

from Spring 2013.

The syntax errors were distilled into 38 error types. Error types are shown in

Table 6-4, along with their frequency (overall count) and prevalence

(proportion of students who made this type of error at least once).

Table 6-4: Error types comprising unresolved errors by frequency and prevalence.

Error Categories Frequency Prevalence
Element Y not allowed as child of element X in this context. 77 15 (65%)
Unclosed element X. 47 10 (43%)
End tag X. 48 5 (22%)
Named character reference was not terminated by a semicolon. (Or
& should have been escaped as &.) 32 6 (26%)

No X element in scope but a X end tag seen. 25 5 (22%)
End tag X seen, but there were open elements. 24 6 (26%)
Consecutive hyphens did not terminate a comment. -- is not
permitted inside a comment, but e.g. - - is. 24 1 (4%)

End tag for X seen, but there were unclosed elements. 19 9 (39%)
Stray end tag X. 11 8 (35%)
Attribute Y not allowed on element X at this point. 9 3 (13%)
Bad value Z for attribute Y on element X. 8 7 (30%)
A X start tag seen but an element of the same type was already
open. 8 6 (26%)

Value Error. 5 3 (13%)
End tag X violates nesting rules. 5 3 (13%)
Saw < when expecting an attribute name. Probable cause: Missing 4 4 (17%)

www.manaraa.com

 130

> immediately before.
Element X is missing a required instance of child element Y. 4 3 (13%)
Quote " in attribute name. Probable cause: Matching quote missing
somewhere earlier. 3 2 (9%)

Parse Error. 3 2 (9%)
A slash was not immediately followed by >. 3 3 (13%)
The Y attribute on the X element is obsolete. 2 1 (4%)
Stray start tag X. 2 1 (4%)
Element X is missing one or more of the following attributes:
content, itemprop, property. 2 1 (4%)

Document type does not allow element X here. 2 1 (4%)
Y is not a X value. 1 1 (4%)
There is no attribute X. 1 1 (4%)
The X element is obsolete. 1 1 (4%)
Text not allowed in element X in this context. 1 1 (4%)
Self-closing syntax (/>) used on a non-void HTML element.
Ignoring the slash and treating as a start tag. 1 1 (4%)

Required attribute X not specified. 1 1 (4%)
Property X doesn't exist. 1 1 (4%)
No space between attributes. 1 1 (4%)
No document type declaration. 1 1 (4%)
End tag for element X which is not open. 1 1 (4%)
Element X must not be empty. 1 1 (4%)
Duplicate attribute X. 1 1 (4%)
Bad character - after <. Probable cause: Unescaped <. Try escaping
it as <. 1 1 (4%)

A X element must have a Y attribute, except under certain
conditions. 1 1 (4%)

--! found in comment. 1 1 (4%)

The top ten error types accounted for 81% of the instances, with a long tail of

errors made by only a small proportion of students. In the following sections,

I organize these error types around two concepts, nesting and parent-child

rules.

6.2.1.2. Nesting

Nesting is the organization of elements into multiple levels hierarchy and is a

central aspect of HTML. Not too surprisingly, eight of the most common

errors related directly to managing HTML start and end tags at multiple levels

of nesting, comprising 35.1% of the total errors found in the students’ final

submissions. These included unclosed elements (i.e., missing end tags):

www.manaraa.com

 131

• Stray start tag X.
• End tag for X seen, but there were unclosed elements.
• End tag X seen, but there were open elements.
• Unclosed element X.

Extraneous end tags:

• Stray end tag X.
• End tag for element X which is not open.
• No X element in scope but a X end tag seen.

And errors caused by overlapped nesting (i.e., closing the outer element before

the inner element is closed):

• End tag X violates nesting rules.

“End tag X” errors were not counted because I found on closer inspection

that they resulted from void elements such as line breaks (br) with malformed

syntax rather mistakes related to nesting.

Table 3-1 gives the number and proportion of errors related to nesting.

The proportion of errors is a useful point of comparison given differences in

the scope of each assignment, and shows that nesting errors remained

relatively consistent from one assignment to next, with a slight downward

turn.

The HTML constructs reported in the original error messages (Table 6-6)

shed light on when and why beginners are likely to make nesting errors.

www.manaraa.com

 132

Table 6-5: The number of nesting errors by assignment. The proportion of overall errors is
given in parentheses.

Assignment Nesting Errors
Lab 0 11 (33.3%)
Lab 1 8 (24.2%)
Lab 2 16 (30.8%)
Lab 3 14 (21.5%)
Assignment 1 8 (12.5%)
Assignment 2 30 (22.2%)

Table 6-6: A count of the HTML elements mentioned in error messages related to nesting.

Construct Count
div 18
body 17
strong 15
p 14
li 10
small 9
head 9
sub 7
sup 4
em 4
dt 4
ol 3
i 3
cite 3
ul 2
span 2
nav 2
html 2
title 1
hr 1
h1 1
a 1

Nesting error messages most occurred most often when dealing with div

elements. There are several reasons this might be the case. First, div elements

are simply a frequently used element. Second, they are commonly used at

multiple levels of nesting as a generic element to organize content, nested

within other divs to define page layouts. Using identical elements multiple

www.manaraa.com

 133

times makes tracking different levels of nesting difficult and increases the

likelihood of making errors with them, although this can be mitigated through

coding practices like indentation and comments.

Inline elements such as strong, i, small, and em, were also frequently

involved in nesting errors. Beginners who are not yet comfortable with CSS

tend to rely heavily on these HTML elements to bold, italicize, or change the

size of text. In this usage, beginners wrap text with several of these tags at

once to apply multiple styles, making them prone to nesting errors. An

aggravating factor is that when multiple inline elements are used to wrap a

single word or sentence, their tags are often written on a single line of code

where no indentation is available to help track nesting.

Finally, upon closer inspection of the responsible code, errors involving

head (“Stray end tag head”), body (“End tag for body seen, but there were

unclosed elements”), and dt (“No dt element in scope but a dt end tag seen.”)

were typically not the result of improper nesting. In HTML, when rules

requiring elements to have specific parent or child elements were broken (e.g.,

placing content elements outside of the head or body), they are implicitly

closed or new ones created by the validator, resulting in unmatched start or

end tags. Thus, web pages with invalid syntax can still often be rendered,

making HTML a more forgiving language, but often leading to unexpected

behaviors and baffling error messages that hinder debugging. In the next

www.manaraa.com

 134

section, I will discuss additional error messages that directly related to these

parent-child rules.

6.2.1.3. Parent-Child Rules

Nesting HTML elements naturally gives rise to a hierarchical structure in the

code, where elements are contained by parent elements and themselves

contain child elements. These elements have rules that constrain how elements

can be nested within others. One example of this is the HTML element, which

must be the root-level element and can only contain one head followed by one

body element.

Most other elements have more freedom in how they can be nested within

one another but are nonetheless governed by parent-child rules. But these

rules were frequently unfamiliar or not well understood by the students. One

plausible account is that beginners often make the simplifying assumption that

aside from a small set of special cases like html, head, and body, elements can

be freely nested within one another. In many cases this simplifying assumption

is workable, producing in a web page that renders as desired, but resulting in

syntactically invalid code. Three of the error types related to rules that dictate

how elements can be nested, accounting for 21.5% of all unresolved syntax

errors.

• Element Y not allowed as child of element X in this context.

• Text not allowed in element X in this context.

• Element X is missing a required instance of child element Y.

www.manaraa.com

 135

The proportion of errors related to parent-child rules had more variation than

did nesting errors from one assignment to the next. As seen in Table 6-7, they

were most common in Lab 1, Lab 2, and Assignment 2, which involved the

creation of list elements.

Table 6-7: The number of parent-child errors by assignment. The proportion of overall errors
is given in parentheses.

Assignment Parent-Child
Errors

Lab 0 3 (9.1%)
Lab 1 10 (30.3%)
Lab 2 12 (23.1%)
Lab 3 13 (20.0%)
Assignment 1 3 (4.7%)
Assignment 2 41 (30.4%)

Once again, I examined the constructs that were mentioned in the error

messages to get a better sense of when students encountered these errors. In

Table 6-8, parent-child combinations that occurred more than once are

shown. The parent elements (i.e., X) are given in the top row and the child

elements (i.e., Y) are given in the leftmost column.

Table 6-8: The most common HTML elements mentioned in error messages related to
parent-child rules. Parent elements are listed horizontally and child elements vertically.

 body head ol ul dl div strong small
dt 10 6
dd 10 6
title 2 6
ul 7 4
blockquote
hr 3 2
br 4 6
a 3

www.manaraa.com

 136

Most of these errors related to description list (dl) elements and their required

child elements (dt and dd). The prevalence of description lists is expected as

they were a requirement for Assignment 2 and one of the first elements

introduced in the course that must be used in coordination with child

elements. Ordered (ol) and unordered lists (ul) were similarly problematic for

students, particularly when nesting lists and sublists. In these cases, a common

error was placing the opening sublist tag outside of its parent’s list items.

Most of the remaining parent-child errors occurred when students nested

block elements within inline elements. In HTML, there are two basic content

models: block elements (e.g., div, table, p) expand to take up the available

width, while inline elements (e.g., span, strong, em) contract around a text

string. It is valid for block elements to have either block or inline elements as

children, but with few exceptions, inline elements can only contain text or

other inline elements. Although the instructor taught students about this

distinction, it is an open question to what degree it was a matter of student

understanding versus recall.

6.2.1.4. Other Errors

Several of the other error types can also be organized around concepts.

Parsing errors like “Saw < when expecting an attribute name” and “A slash

was not immediately followed by >” indicate problems that students had with

the syntax within markup tags instead of between them. The syntax of void

elements such as line breaks and horizontal rules, which are comprised of a

www.manaraa.com

 137

single tag instead of a pair, also presented difficulties for the students, resulting

in the “Self-closing syntax (/>) used on a non-void HTML element” error

message. The occasional error of this type may be a simple typo; however, the

persistent recurrence of this type of error may be a red flag, indicating deeper

problems grasping the syntax of individual markup tags rather than the

coordination of multiple elements.

A second group of errors related to representations of various data,

including HTML character references (e.g., ©), colors in hexadecimal

notation (e.g., #53A5C5), and URLs (e.g., http://openhtml.org/). Each of

these introduces new schemes for properly formatting values, and the

opportunity to engage with additional facets of computation.

6.2.2. Resolving Errors

The previous section gives insight into the errors that remained in the final

versions of students’ assessments. In this section, I use the validator feature as

a lens for analyzing coding activity during the construction of web pages.

Specifically, I analyze the errors present in the students’ code for each

validation attempt, with the goal of identifying the recurrence and resolution

of the errors. This analysis is based on a closer inspection of Assignments 1

and 2 for Spring 2013, enabled by the validator feature and fine-grained

logging that were added to openHTML.

www.manaraa.com

 138

6.2.2.1. Validator Usage

Students averaged 12.6 validations (SD=15.0). About half of validations

(50.6%) resulted in one or more errors. The extent to which the validators

were used varied from student to student, ranging from three students who

did not use the validator at all to one student who used it 56 times across their

assignments.

Based on observations of coding activity using the openHTML replayer,

there seemed to be little correlation between an ability to write syntactically

correct code and validator usage. Among students who showed the ability to

write error-free code, some rarely validated their code until it was nearly

completed while others used it methodically from early on. Similarly, among

students who had more substantial difficulties, some relied on the validators

heavily to debug their code while others used them rarely or not at all. This is

characteristic of the behavioral differences in stoppers, movers, and tinkerers

that has been observed among novice programmers [Perkins et al. 1986; Jadud

2006].

6.2.2.2. Recurrence of Errors

Validations generated 582 total error messages, which were narrowed down to

23 error types. Identical errors, determined by error message and location, in

consecutive validations were combined into a single episode, which resulted in

268 episodes. These are summarized in Table 6-9.

www.manaraa.com

 139

In addition to frequency and prevalence, recurrence was calculated as the

number of consecutive validation attempts in which an error was present.

Recurrence indicates how persistent an error is and suggests the degree with

which students had trouble resolving it through repeated validation attempts.

Errors requiring multiple validation attempts are suggestive of deeper

conceptual difficulties as opposed typographical mistakes and other slips.

Table 6-9: Types of errors found during validation. Frequency is the number of instances of
an error, prevalence is the number and percentage of students that made an error at least

once, recurrence is the median number of validations that an error lasted, and resolution is
the number and percentage of instances that were eventually resolved.

Error Categories Frequency Prevalence
Recurrence

Median
Recurrence

Max Resolution

Element Y is not
allowed as child of
element X in this
context.

73 10 (77%) 1 7 65 (89%)

Consecutive
hyphens did not
terminate a
comment. -- is not
permitted inside a
comment, but e.g. -
- is.

39 3 (23%) 4 6 35 (90%)

Unclosed element
X. 23 7 (54%) 1 3 22 (96%)

End tag X. 21 4 (31%) 3 5 21 (100%)
Attribute Y not
allowed on element
X at this point.

20 1 (8%) 1 1 20 (100%)

Named character
reference was not
terminated by a
semicolon. (Or &
should have been
escaped as &.)

17 4 (31%) 1 3 17 (100%)

No X element in
scope but a X end
tag seen.

16 5 (38%) 2 2 16 (100%)

End tag for X seen,
but there were
unclosed elements.

13 7 (54%) 1 3 12 (92%)

End tag X seen,
but there were
open elements.

10 4 (31%) 1 1 10 (100%)

Y is not a X value. 4 2 (15%) 1 2 4 (100%)

www.manaraa.com

 140

Stray end tag X. 4 2 (15%) 1 1 4 (100%)
Property X doesn't
exist. 4 2 (15%) 1 2 4 (100%)

Parse Error 4 1 (8%) 1 2 4 (100%)
End tag X violates
nesting rules. 4 1 (8%) 1 1 4 (100%)

Bad value Z for
attribute Y on
element X.

4 2 (15%) 1 1 4 (100%)

Garbage after </. 3 1 (8%) 3 5 3 (100%)
Text not allowed in
element X in this
context.

2 1 (8%) 2 2 2 (100%)

Element X is
missing a required
child element.

2 2 (15%) 1 2 2 (100%)

Saw = when
expecting an
attribute name.
Probable cause:
Attribute name
missing.

1 1 (8%) 1 1 1 (100%)

No space between
attributes. 1 1 (8%) 1 1 1 (100%)

Character reference
was not terminated
by a semicolon.

1 1 (8%) 2 2 1 (100%)

A slash was not
immediately
followed by >.

1 1 (8%) 1 1 1 (100%)

< in attribute
name. Probable
cause: > missing
immediately
before.

1 1 (8%) 1 1 1 (100%)

40.7% of errors lasted more than one validation, up to a maximum of 7. The

mean recurrence rate was 2.0 validation attempts (SD=1.5) and the median

was 1. Since the recurrence of errors was highly skewed, with most lasting

only one validation attempt, the median and maximum are provided in the

table above. One explanation for this skew is that fixing one validation error

commonly resolved several additional errors. Given that most errors lasted

only one validation attempt, comparing error types by their average recurrence

www.manaraa.com

 141

rates is not highly instructive. Instead, recurrence seems most useful as a

measure for detecting when an individual student is having acute difficulties,

expressed as high maximum recurrence rates in the table above.

I note that recurrence rates alone do not fully capture the extent of

difficulties students had resolving a particular problem. Inspecting their coding

activity through the openHTML replayer revealed that students often engaged

in tinkering, toggling the faulty code or eliminating it completely but got no

closer to a solution. Especially problematic errors also sometimes led to a

cascade of new errors. In these situations, recurrence rates would be low and

would not accurately reflect the scope of the problem.

6.2.2.3. Resolution

Despite HTML and CSS syntax errors taking multiple attempts to resolve,

students were eventually successful in resolving them in most cases. Among

the 268 errors detected in Assignments 1 and 2, only 14 were unresolved in

the final submissions — a 94.8% success rate. This was consistent from one

error type to the next, all ranging from about 90% to 100%.

When comparing this analysis with the results in Section 6.2.1, I found that

in addition to the 14 unresolved errors reported here, 67 were introduced after

the final validation attempt or in code that was never validated at all. In other

words, 82.7% of the unresolved errors were never brought to the attention of

students through validation. It is likely that an equally high number of the

unresolved errors in the other term were never detected, given that the

www.manaraa.com

 142

validators were not integrated with openHTML at that point, requiring

additional effort on the part of students. By practicing validation more

systematically, students might be able to resolve up to 95% of unresolved

errors in the other assignments as well.

6.3. Discussion

6.3.1. Mastering Syntax through Practice

In this study, I focused on syntax errors in HTML and CSS, two languages

that are fundamental to web development but often overlooked in computing

education research. My results highlight that despite the seeming simplicity of

these languages, their syntaxes can present many challenges for beginners. On

average, students had 16.6 unresolved errors across the six assessments

included in the analysis; only 4 students submitted error-free code. These

errors not only present obstacles to authoring syntactically valid code, but also

compound difficulties with semantics and design.

Accounting for nearly a quarter of the unresolved errors were issues

related to parent-child rules. Parent-child relationships follow an extensive

system of rules that govern when it is valid for certain types of HTML

elements to be nested in one another. In my previous study, I found that

errors related to these occurred primarily at the rule-based level of behavior.

With the introduction of new elements, parent-child rules and the interactions

between them continue to grow. In the study, this was reflected in the types of

www.manaraa.com

 143

errors students made as they progressed, which ballooned with the

introduction of lists and sub-lists. I expect that as students learn new,

compound elements such as tables and forms, and work with larger, more

complex web pages, they will continue to make errors that violate the myriad

parent-child rules.

On the other hand, the syntax for nesting tags is relatively simple and

consistent from one element to the next, yet it accounted for over one-third of

unresolved errors. Although students appeared to grasp the syntax of nesting

tags quickly (all of the students demonstrated proper nesting from the first

assessment), errors related to nested tags occurred with regularity during all

five weeks of the study. These errors often manifested when students were

confronted with new, compound elements like lists, and deeper levels of

nested tags. This suggests that these nesting errors were attentional in nature

— as they grappled with unfamiliar or complex code and their cognitive load

was taxed [Chandler and Sweller 1996], an end tag was forgotten or misplaced.

Indeed, in my previous study, I found that most errors related to nesting tags

occurred at the skill-based level of behavior and were attentional in nature.

What this underscores is that beyond declarative knowledge, practice plays

an important role when learning HTML and CSS. The syntax of nesting

markup tags may be learned on day one, but the development of skills related

to reading and writing nested code — which includes visually parsing

delimiters (start and end tags in the case of HTML), and mentally translating

www.manaraa.com

 144

them into a hierarchical structure — is ongoing. Through practice, the

deliberate processes of reading and writing nested code can eventually become

highly routinized skills [Rasmussen 1983], helping minimize these errors while

freeing cognitive load for higher-level concerns. This parallels research on

reading text, where reading skills at the letter and word levels have been found

to influence higher-level reading comprehension and achievement [Biemiller

1977].

6.3.2. Learning through Validation

The findings show that validation is important, surfacing syntax errors in half

of the students’ validations attempts. Furthermore, validation is effective,

evidenced by the eventual resolution of nearly 95% of the errors detected with

validation. In contrast, most of the unresolved errors (83%) were present in

code that was never tested. Despite its effectiveness, many students did not to

validate their code. This is all the more surprising given that validation was an

explicit requirement of the homework assignments, and that in later weeks,

openHTML’s integrated validator provided added convenience.

One of the challenges of web development is that validation is optional,

unlike programming languages like Java that require a compilation step.

Complicating matters further, HTML is a highly forgiving language by design,

and browser engines attempt to render a web page even in the presence of

syntax errors, implicitly modifying the source code if necessary to do so. This

results in cases where a web page displays exactly as intended while numerous

www.manaraa.com

 145

syntax errors remain latent in the source. Beyond the quality of the code itself,

this lack of feedback can lead to the development of poor habits and faulty

mental models that do not equip students with the ability to predict the

relationship between input and output in new contexts [duBoulay 1986].

Beyond teaching validation practices specifically and testing more

generally, there is an opportunity to encourage validation through the design

of web editors. For instance, displaying the validation status of a web page

upon saving it would help users to maintain awareness of latent errors in code

and motivate users to correct them. Many existing web editors go even

further, providing instant feedback of errors detected in the code.

Finally, there are opportunities to improve validator feedback by

addressing understanding and suggesting solutions. Although students

successfully corrected most of the errors detected during validation, there

were cases that required numerous validation attempts. The feedback provided

by the validators likely contributed to the difficulties students had in resolving

these errors. Many errors generated cryptic feedback; programming language

compiler feedback is likewise known to cause novices trouble [Nienaltowski et

al. 2007; Marceau et al. 2011; Lee and Ko 2011; Denny et al. 2014]. . This was

especially the case for the CSS validator, which returned terse “parse error” or

“value error” messages.

One message could be associated with multiple, disparate errors. A

common error, “element Y not allowed as child of parent element X in this

www.manaraa.com

 146

context”, was made at least once by 77% of students, with 65% leaving one or

more of them unresolved. This error occurred in two distinct circumstances:

when parent-child rules were violated by valid elements and when invalid

elements (e.g., <text> and <stong>) were used at all. Conversely, one error

could be associated with multiple error messages. An extraneous end tag could

alternately trigger a “stray end tag” or “no element in scope but end tag seen”

message depending on the context in which it occurred. Students had little

help in understanding the reasons for these distinctions.

When a student is validating their code and reviewing their errors, this is a

critical learning opportunity. Rather than mere technical correctness, we see

these events as opportunities to provide actionable feedback that helps

students learn to author correct code and improve their understanding

[Hartmann et al. 2010].

6.3.3. Limitations

Several limitations temper these findings. First, this study focuses on a

relatively small sample of students in a single course. Therefore, while the

results shed light on the types of syntax errors novices make, they are not

likely to generalize to web development students in all contexts. For example,

participants in this study were mostly non-CS majors with minimal prior

programming experience. A course comprised of CS majors with significant

programming experience may commit fewer syntax errors related to nesting,

which draws on general skills associated with program composition and

www.manaraa.com

 147

comprehension [Corritore and Wiedenbeck 1991], compared to parent-child

rules that are more specific to the domain of web development.

Moreover, this study focused on early assessments that introduced features

of HTML and a small amount of CSS. I did not track student activity

involving JavaScript and more complex HTML and CSS, which are likely to

introduce different kinds of errors and resolution strategies. This was due to

the limited viability of openHTML in later weeks of the course. openHTML

achieves much of its simplicity by supporting only single web pages. The

drawback of this approach is that reusing a CSS stylesheet or other resources

between multiple HTML documents becomes cumbersome, requiring users to

duplicate their efforts for each webpage. The instructor of the course was able

to use openHTML for the two-page site in Assignment 2 through the careful

design of the assignment and guidance for the students, but using openHTML

beyond this point was simply not feasible. The use of openHTML was also

limited by its abstraction of the file management, which allows beginners to

focus on the code but prevents them from learning to organize files and use

relative links to reference web pages, images, and other resources. This is an

important aspect of web development and of computational literacy more

generally [Miller et al. 2010].

The log analysis provided a fine-grained view of coding behavior, but I

was limited by a lack of contextual clues compared to the previous lab study.

Although the assignments provide some guidance on the students’ overall

www.manaraa.com

 148

objectives, this lack of context limited our ability to infer their intent with

respect to more granular actions. Because of these limitations, I focused the

analysis on syntax errors, setting aside difficulties they might have planning the

design of a web page or the semantic errors they may have made while

creating it. These also comprise a significant portion of their learning

experience and have the potential to impact their attitudes and progress in

learning web development as much as syntax errors.

Compared to the study described in chapter 5, the log analysis used in this

study was limited in its ability to explore the causes of the syntax errors.

However, rather than discounting log analysis altogether, the findings suggest

how analyzing student activity patterns over time can provide clues to the

cause of errors. This study made error messages the unit of analysis. As noted

in the results section, multiple errors often tied together as extended episodes

of debugging or as symptoms of a deeper conceptual problem. How these

data can be effectively interpreted to understand higher-order difficulties or

determine the cause of errors is open for future research.

One potential approach is to couple remote log analysis with more direct

methods of inquiry. For instance, a post-test might ask students to interpret

error messages that they encountered during the course. Students could also

be asked to assess the severity of errors and the usefulness of the feedback

that the validators provide, whether through follow-up interviews or during

the course through a feature implemented in openHTML.

www.manaraa.com

 149

6.4. Summary
In this chapter, I have presented a study of students in an introductory web

development course using openHTML to complete their initial assignments.

Activity logs collected from openHTML were analyzed to investigate the

nature of the syntax errors students made and how they were able to

overcome them.

First, with respect to the most common syntax errors that students had,

35.1 percent of the unresolved errors, made up of eight error types, directly

related to nesting. An additional 21.5 percent of unresolved errors, made up of

three error types, related to parent-child rules. While students demonstrated a

familiarity with nesting, they continued to make nesting errors with

consistency in the later assignments, particularly when dealing with new

elements or more complex structures. On the other hand, errors related to

parent-child rules occurred when students encountered new elements or new

interactions between elements.

Second, I investigated how well students were able to resolve the errors

they made. When validating their code, students were quite successful in

overcoming the syntax errors they encountered. In Assignments 1 and 2, the

Spring 2013 students found 268 distinct syntax errors in their code during

validation. They were able to resolve 94.8 percent of these, taking only 1 or 2

validation attempts to do so in the vast majority of cases. While in the

aggregate, measures of error recurrence and resolution showed students were

www.manaraa.com

 150

successful in fixing errors, these measures were also useful in identifying cases

where a small number of students did have substantial trouble overcoming

errors related to issues like commenting HTML code.

Finally, I explored the effect that the HTML and CSS validators integrated

with openHTML had on the students’ ability to overcome errors. I found that

the validators were instrumental in making students aware of and ultimately

resolve errors. Only 5.2 percent of the errors that students detected through

validation were unresolved. In fact, the vast majority of unresolved errors,

82.7 percent, occurred after the final validation attempt that a student made or

in code that was never validated at all. While students made use of the

validators, averaging 12.6 validation attempts, they did not use them

consistently. Three students did not use them at all. Despite the value of

validation in helping students become aware of syntax errors, most errors

were latent, invisible in the ever-present feedback provided by the live preview

pane. An indicator for validation status in openHTML is one way to help

students maintain awareness of syntax errors in their code and motivate them

to correct them without inundating them with error messages. For errors that

students did detect but nevertheless had trouble resolving, there is an

opportunity to improve validator feedback to not only provide a description

of the error, but possible solutions and explanations that strive to improve

student understanding.

www.manaraa.com

 151

Chapter 7
Conclusion

In this dissertation, I have investigated the experiences of beginners learning

basic web development through the lens of computing education research. I

have conducted several studies that examine the difficulties they face learning

HTML and CSS, which have informed the design of openHTML. In this final

chapter, I discuss the major contributions of my findings and outline avenues

for future work.

7.1. Contributions

7.1.1. Learning Barriers in a Web Development Course

This dissertation characterizes the learning experiences of web development in

terms of the barriers students encounter in an introductory web development

course. In Chapter 3, I conducted a content analysis of the help forums used

in a course and identified five broad types of barriers: administration, content,

design, coding, and technology.

I determined that 34% of help-seeking instances related to coding. I also

discovered that administrative and technological issues were also significant,

making up 30% and 25% of help-seeking instances respectively, with

technological issues related to configuring the development environment

www.manaraa.com

 152

especially acute in the initial weeks of the course and causing distress for many

students.

Although my primary interests lay in the difficulties and opportunities

students have when learning HTML and CSS, the non-coding barriers put

them in perspective. These findings enrich the literature on the experiences

students have in a web development course, which have largely been

comprised of case studies, by providing a detailed analysis that is firmly

grounded in contemporaneous data.

7.1.2. Common Errors in HTML and CSS

A second outcome of this dissertation is providing one of the first and most

detailed investigations of the errors people make when using HTML and CSS.

In the computing education literature, errors have frequently been used as a

lens for understanding how people learn about programming, though the

precise errors identified with HTML and CSS differ from ones previously

identified with programming languages — absent are difficulties with variable

assignment, loops, or recursion. All three of my main studies contribute to an

understanding of these errors. In addition to a detailed description of

common errors people make with HTML and CSS, these studies provide two

main insights.

First, I have found repeated evidence that beginners can have substantial

difficulties with HTML and CSS, despite their relative simplicity and, given the

gulf between the number of people who learn these languages and the dearth

www.manaraa.com

 153

of research on the topic, their presumed ease of use. In Chapter 3, I

determined that students consistently sought help for HTML for the duration

of the course, indicating problems they were unable to resolve on their own.

In Chapter 5, participants were tasked with completing basic HTML and CSS

coding tasks. Despite possessing various levels of prior experience with web

development, including two who self-identified as professional web

developers, participants made numerous errors, including several instances

where they were not able to complete a task. Finally, I turned back to a web

development course in Chapter 6. By analyzing activity logs in openHTML, I

identified 38 different syntax error types, and determined many cases where

students repeated errors of the same type and had difficulty resolving them.

Consistent with my first study, I found that not only did syntax errors with

HTML continue weeks into the course, but that they increased in frequency

with the introduction of new elements and the growing scope and complexity

of the assessments.

Second, I have found support for the value of understanding intent when

analyzing these errors. In some cases, errors were due to a lack of familiarity

with the extensive syntactic and semantic rules governing how HTML and

CSS are used (e.g., parent-child rules), and unanticipated interactions between

these rules. In other cases, participants violated well-understood rules (e.g.

nesting elements), exhibiting signs of a strain on their cognitive load while

dealing with complex or less familiar constructs. In Chapter 5, I reported on a

www.manaraa.com

 154

think-aloud task study that used an intention-based analysis, identifying not

only how errors manifest in the code (i.e., the symptoms of student

difficulties), but tapping into the goals, plans, and mental models of the

participants (i.e., the causes) that explain these errors. In Chapter 6, my ability

to determine intent was limited by my use of remote logging methods, but I

was able to make limited inferences by relying on my experiences in the

previous study and analyzing activity over time (e.g., successfully nesting

HTML elements until dealing with more deeply nested code).

Understanding intent is critical for interpreting and addressing

programming errors. To illustrate this point, consider a recent study that

found enhanced syntax error feedback to be ineffectual for Java students

[Denny et al. 2014]. Backing this claim, they report no significant difference in

the number of non-compiling submissions and attempts needed to resolve

errors between students presented with standard and enhanced feedback. In

Chapter 5, I reported that the majority of HTML and CSS errors were typos

and other skill-based errors, for which enhanced feedback would be expected

to have little effect. On the other hand, a smaller proportion of errors related

to unfamiliarity or misunderstanding of specific rules, for which enhanced

feedback would be expected to provide a great deal more benefit. Assuming a

similar distribution for the Java students, the lack of a statistically significant

difference is not surprising. However, taking only the rule-based errors under

consideration, a much stronger effect is likely to be observed.

www.manaraa.com

 155

A secondary outcome of this emphasis on intention when studying errors

is methodological in nature. In Chapter 5, I outlined methods for the

intention-based analysis of coding errors, and heuristics for classifying errors

at different levels of activity. Despite the methodological challenges that are

raised, the additional effort required to probe the intent of learners in order to

understand the cause of errors and design systems that effectively address

them is justified.

7.1.3. The Design of a Web Editor for Learners

I have also reported on the design and implementation of openHTML, which

strives to minimize non-coding barriers while exposing users to coding as an

authentic practice of web developers and a vehicle for introducing

computational concepts. The deployment of openHTML demonstrated the

efficacy of such a tool in the initial weeks of an introductory web development

course and revealed several tradeoffs of this minimal approach. For instance,

the single page approach limited opportunities to learn about reuse of

stylesheets and other resources and the lack of a file system led to similar

issues for learning about source code organization and the use of relative

paths.

openHTML also serves as a case study for taking a design-based research

approach to supporting web developers. In contrast to most web editors,

openHTML was designed with a focus on learners and was informed by

multiple rounds of user research. Many aspects of its initial design were

www.manaraa.com

 156

informed by the barriers reported in Chapter 3, including simplified

configuration through a web-based implementation, a minimal interface that

focuses on HTML and CSS, and immediate feedback through the live

preview. By observing usage in an after-school workshop (Chapter 4) and a

lab study (Chapter 5), I also identified several usability issues that were

addressed through minor tweaks. As described in Chapter 6, several major

features were then added to support openHTML’s use in formal learning

context, including basic administrative features and built-in HTML and CSS

validators. Finally, openHTML served as a research instrument, enabling the

analysis of student coding behavior through webpage revisions and later, fine-

grained activity logging.

This work illustrates a loose, but nonetheless constructive, form of DBR in

which multiple empirical studies of novice web developers were used to

inform the design of a system, and the system was in turn designed to support

research efforts.

7.1.4. Computational Literacy in Basic Web Development

Finally, my studies offer initial evidence for basic web development as a rich

context for becoming computationally literate, and characterize the skills and

concepts with which people are likely to engage when learning HTML and

CSS. Based on the analysis of online help-seeking behavior presented in

Chapter 3, I argued that students engage with and have difficulties related to

fundamental computational skills and concepts such as notation, hierarchies

www.manaraa.com

 157

and paths, and decomposition. Through the lab-based task study described in

Chapter 5, I catalogued numerous skill-based errors such as mistyped

constructs and unclosed tags that have parallels with errors commonly made

by novice programmers. In the log analysis presented in Chapter 6, I identified

two concepts fundamental to HTML, nesting and parent-child rules, and

analyzed the syntax errors made by students in terms of them.

In comparison to programming languages like JavaScript, HTML and CSS

are a great deal more constrained. Instead of defining one’s own properties

and methods, HTML and CSS largely expose only ready-made attributes and

properties. While this reduced expressiveness can be seen as a disadvantage, it

offers some benefits in terms of an introduction to writing code. First, this

reduces complexity and cognitive burden by allowing learners to focus on the

“what” instead of the “how” as is typical with declarative paradigms. Second,

given the domain-specific nature of these languages, their applicability is more

apparent. The increased contextualization may confer both motivational and

cognitive benefits.

Interestingly, in terms of computational literacy skills and knowledge,

where HTML and CSS have most overlap with conventional programming

languages are at the very low and high levels. I found that many errors related

to low-level skills like enclosing HTML values in quotes, terminating CSS

declarations with semicolons, and navigating multiple levels of nested code,

which share commonalities with errors that are observed in programming. At

www.manaraa.com

 158

the high level, practices and perspectives such as the precision of computing

languages, separation of concerns, modularization, testing, and debugging are

shared with programming languages. Where HTML and CSS diverge most are

at the level that binds the low with the high, within the syntax and semantics

of the particular language constructs.

Identifying computational skills and concepts that students engage with

when learning HTML and CSS is a first step, setting the foundation for

further research. Therefore, I start the next section on future directions with a

discussion on how the learning of such skills and concepts might be measured.

7.2. Future Directions
In this section, I discuss several avenues for future work that build on the

research presented in this dissertation.

7.2.1. Learning Effects in Web Development

This dissertation provides initial evidence for basic web development as a

context for developing computational literacy, identifying several

computational skills and concepts that beginners engage with through HTML

and CSS. As yet unknown are to what extent students develop these skills and

knowledge, and the effect new approaches to teaching and supporting

students might have on them. To pursue this line of inquiry involves

developing instruments that measure student learning of the computational

skills and concepts that have been identified in this dissertation, and using

www.manaraa.com

 159

these instruments to conduct pre- and post-assessments that can compare the

effect of various interventions.

For example, many of the difficulties students had related to reading and

writing code at deep levels of nesting. My findings suggest that these errors

occur at the skill-based level. That is, students are aware of the syntax for

nesting HTML elements within other elements, but forget or misplace the

element’s end tag when their working memory is overloaded. On the other

hand, developing the ability to read deeply nested code frees up working

memory to attend to higher-level concerns with the code. Studies of reading

have found a similar relationship between low-level skills like reading letters,

words, and simple text with higher-order reading achievement [Biemiller

1977].

I am in the early stages of developing an instrument that measures the

speed and precision with which students are able to navigate and format

hierarchically structure code, loosely inspired by Parson problems [Parsons

and Haden 2006]. This instrument, which probes the ability to translate linear

text into an abstract, hierarchical model, could be applied to HTML as well as

other forms of code such as JavaScript, JSON, and CSS. One potential

application is to use it with web development students before and after a

course, in order to measure the effect of learning web development on

navigating both forms of code taught in the course and its transfer to new

unfamiliar formats.

www.manaraa.com

 160

7.2.2. Informal Learning at a Large Scale

The studies presented in this dissertation have primarily examined students in

university courses. A formal learning context was chosen as a starting point in

order to efficiently study beginners with minimal programming experience

learning a common set of topics. However, the literature [Rosson et al. 2004;

Dorn and Guzdial 2010a], as well as reports by the participants in the lab-

based study, demonstrate the diversity of backgrounds found in web

development. Informal, self-directed learning must also be considered when

studying how to support beginners of web development.

This informal learning typically occurs online and is sporadic, punctuated

by bursts of intense activity, posing a significant challenge for researchers.

One way to resolve this is to go where the informal learning happens. For

instance, prior studies show that online documentation, tutorials, and

question-and-answer forums are popular learning resources. Analyzing how

users engage with these resources can give insight into the nature of learning

web development. A second option is to take a more interventionist approach

by promoting usage of instrumented web development tools and resources.

The study described in Chapter 6 highlights the promise of remote logging as

an efficient method of studying learning in web development at scale. By

instrumenting openHTML, I was able to capture the coding behavior of all of

the students whether in the classroom or at home, although my analysis only

scratched the surface of making sense of this fine-grained coding data to

www.manaraa.com

 161

understand larger underlying phenomena. Future work would draw from the

fields of educational data mining [Baker and Yacef 2009; Romero and Ventura

2010] and learning analytics [Siemens 2012], harnessing “big data” and

machine learning techniques to explore questions about learning practices in

web development.

A major theme underscoring my research is the criticality of understanding

a learner’s intention when interpreting their coding behaviors and providing

them with guidance. Unfortunately, online activity logs as they have been used

in openHTML offer little insight into the user’s intentions. One way to

address this is to revisit the think-aloud data described in Chapter 5 and

analyze the relationships between errors manifested in the code and the

underlying cognitive causes. Some errors, such as missing end tags, are likely

to have a higher probability of occurring at the skill-based level, while others,

such as using class names that begin with a numeral, are likely to occur at the

rule-based level. A second, more direct approach is to present students with

snippets of code containing various common errors for which their

understanding can be gauged.

A final approach is to design openHTML to provide progressive error

feedback. At the first level, errors are marked only by their presence and

location. If the user is unable to correct the error with the aid of this

information, they can activate a second, enhanced level that provides an

explanation of the error and potential solutions. A user who successful fixes

www.manaraa.com

 162

an error based on the first level of feedback would indicate a skill-based error,

while another user who intentionally accesses the second level of feedback

indicates a rule- or knowledge-based error.

7.2.3. Improving Teaching and Learning Tools

openHTML and similar tools offer ongoing opportunities to design and

evaluate novel features that support learning HTML and CSS. I will outline

three paths forward.

First, as discussed in section 6.3.2, HTML and CSS validation feedback is

often cryptic or misleading, rarely addressing learners’ conceptions or offering

solutions. Additionally, the feature only detected syntax errors, although

learners would benefit from feedback on common semantic errors such as

unused classes. Future work could be devoted to designing error feedback that

is more understandable to beginners and has been developed through an

understanding of their current mental models. Findings from the research

described in the previous section on relating coding errors to intention could

inform this work.

Second, the initial design of openHTML achieved addition by subtraction:

I abstracted away many of the non-coding barriers in order to help users focus

on the code. Future iterations might be devoted to providing learners with

within-tools scaffolding, that is, features that actively model more expert

knowledge and practices for beginners, and that can eventually be faded away

when no longer needed. For instance, I have developed a tutorial feature that

www.manaraa.com

 163

deeply integrates with code in a web editor. Scaffolding might also take the

form of a code snippet library modeling HTML and CSS patterns that users

can browse, copy into their own code, and modify.

Finally, the logging feature of openHTML suggests features that track

activity and support assessment for both teachers and students. For students,

features might be designed to support reflection and metacognition [Azevedo

and Hadwin 2005], which are important facets of learning, particularly in

cultivating self-regulated and lifelong learners. They might also take the form

of a dashboard that transforms data collected by openHTML into

visualizations and other information designed to help teachers track and assess

student progress.

7.3. Parting Words
Through diverse pathways and motivations, basic web development continues

to serve a gateway to computation for countless people. This dissertation has

aimed at improving our understanding of these first forays and exploring how

to design systems that help beginners make the most of them. It presents

some of the first and most substantive studies of beginners learning HTML

and CSS, two of the most broadly used computing languages. My motivation

for this work is not to train a legion of professional web developers. Rather, it

is to leverage these moments to learn important concepts, practices, and

perspectives that have ongoing benefits when people interact with software in

www.manaraa.com

 164

all of their pursuits, and to foster attitudes and identities that lead to a

deepened and lifelong engagement with computing.

www.manaraa.com

 165

References

ACM, 2010. Running on Empty: The Failure to Teach K-12 Computer
Science in the Digital Age. The Association for Computing Machinery & The
Computer Science Teachers Association, pp.1–76.

ADELSON, B., 1981. Problem solving and the development of abstract
categories in programming languages. Memory & Cognition, 9(4), pp.422–
433.

AMES, C. AND ARCHER, J., 1988. Achievement goals in the classroom:
Students' learning strategies and motivation processes. Journal of Educational
Psychology, 80(3), pp.260–267.

AN, H., 2007. Designing an effective web-based coding environment for
novice learners. Innovate, 4(1), pp.1–6.

ANDERSON, J.R. AND JEFFRIES, R., 1985. Novice LISP errors: Undetected
losses of information from working memory. Human-Computer Interaction,
1(2), pp.107–131.

ANDERSON, J.R., CORBETT, A.T., KOEDINGER, K.R. AND PELLETIER, R.,
1995. Cognitive tutors: Lessons learned. Journal of the Learning Sciences, 4(2),
pp.167–207.

AZEVEDO, R. AND HADWIN, A.F., 2005. Scaffolding self-regulated learning
and metacognition: Implications for the design of computer-based
scaffolds. Instructional Science, 33, pp.367–379.

BAKER, R.S.J.D. AND YACEF, K., 2009. The state of educational data mining
in 2009: A review and future visions. Journal of Educational Data Mining,
1(1), pp.3–17.

BARAB, S. AND SQUIRE, K., 2004. Design-based research: Putting a stake in
the ground. Journal of the Learning Sciences, 13(1), pp.1–14.

BAYMAN, P. AND MAYER, R.E., 1983. A diagnosis of beginning programmers'
misconceptions of BASIC programming statements. Communications of the
ACM, 26(9), pp.677–679.

www.manaraa.com

 166

BEAUBOUEF, T. AND MASON, J., 2005. Why the high attrition rate for
computer science students: Some thoughts and observations. ACM
SIGCSE Bulletin, 37(2), pp.1–4.

BEN-ARI, M., 1998. Constructivism in computer science education. In
Proceedings of the ACM Technical Symposium on Computer Science
Education. pp. 257–261.

BIEMILLER, A., 1977. Relationships between oral reading rates for letters,
words, and simple text in the development of reading achievement.
Reading Research Quarterly, 13(2), pp.223–253.

BLACKWELL, A.F., 2002. First steps in programming: A rationale for attention
investment models. In Proceedings of the IEEE Symposia on Human-
Centric Computing Languages and Environments. pp. 2–10.

BONAR, J. AND SOLOWAY, E., 1985. Preprogramming knowledge: A major
source of misconceptions in novice programmers. Human-Computer
Interaction, 1, pp.133–161.

BOUSTEDT, J. ET AL., 2007. Threshold concepts in computer science: Do they
exist and are they useful? In Proceedings of the ACM Technical
Symposium on Computer Science Education. pp. 1–5.

BRANDT, J., DONTCHEVA, M., WESKAMP, M. AND KLEMMER, S.R., 2010.
Example-centric programming: Integrating web search into the
development environment. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. pp. 513–522.

BRANDT, J., GUO, P.J., LEWENSTEIN, J., DONTCHEVA, M. AND KLEMMER,
S.R., 2009. Two studies of opportunistic programming: Interleaving web
foraging, learning, and writing code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 1589–1598.

BRAUN, V. AND CLARKE, V., 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology, 3(2), pp.77–101.

BRENNAN, K., CHUNG, M. AND HAWSON, J., 2011. Scratch Curriculum Guide,

BROWN, A.L., 1992. Design experiments: Theoretical and methodological
challenges in creating complex interventions in classroom settings. Journal
of the Learning Sciences, 2(2), pp.141–178.

BROWN, J.S., COLLINS, A. AND DUGUID, P., 1989. Situated cognition and the
culture of learning. Educational Researcher, 18(1), pp.32–42.

www.manaraa.com

 167

CAMP, T., 1997. The incredible shrinking pipeline. Communications of the ACM,
40(10), pp.103–110.

CHANDLER, P. AND SWELLER, J., 1996. Cognitive load while learning to use a
computer program. Applied Cognitive Psychology, 10, pp.151–170.

CHANG, K.S.-P. AND MYERS, B.A., 2012. WebCrystal: Understanding and
reusing examples in web authoring. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 1–10.

CHI, M.T.H., 1997. Quantifying qualitative analyses of verbal data: A practical
guide. Journal of the Learning Sciences, 6(3), pp.271–315.

COLLINS, A., 1992. Toward a design science of education. In E. Scanlon & T.
O'Shea, eds. New Directions in Educational Technology, pp. 15–22.

COLLINS, A., JOSEPH, D. AND BIELACZYC, K., 2004. Design research:
Theoretical and methodological issues. Journal of the Learning Sciences, 13(1),
pp.15–42.

CONGRESS, U.S., 2007. America COMPETES Act,

COOPER, S., DANN, W. AND PAUSCH, R., 2000. Alice: A 3-D tool for
introductory programming concepts. Journal of Computing Sciences in Colleges,
15(5), pp.107–116.

CORBIN, J. AND STRAUSS, A., 1998. Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory, Sage Publications.

CORRITORE, C.L. AND WIEDENBECK, S., 1991. What do novices learn during
program comprehension? International Journal of Human-Computer Interaction,
3(2), pp.199–222.

DENNING, P.J. AND MCGETTRICK, A., 2005. Recentering computer science.
Communications of the ACM, 48(11), pp.15–19.

DENNY, P., LUXTON-REILLY, A. AND CARPENTER, D., 2014. Enhancing
syntax error messages appears ineffectual. In Proceedings of the Annual
Conference on Innovation and Technology in Computer Science
Education. ACM Press, pp. 273–278.

DÉSILETS, A., PAQUET, S. AND VINSON, N.G., 2005. Are wikis usable? In
WikiSym. pp. 3–15.

DISESSA, A.A., 2001. Changing Minds: Computers, Learning, and Literacy,
Cambridge, MA: MIT Press.

www.manaraa.com

 168

DORN, B. AND GUZDIAL, M., 2010a. Discovering computing: Perspectives of
web designers. In Proceedings of the International Computing Education
Research Conference. pp. 23–29.

DORN, B. AND GUZDIAL, M., 2010b. Learning on the job: Characterizing the
programming knowledge and learning strategies of web designers. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. pp. 703–712.

DUBOULAY, B., 1986. Some difficulties of learning to program. Journal of
Educational Computing Research, 2(1), pp.57–73.

ECKERDAL, A., MCCARTNEY, R., MOSTÖM, J.E., RATCLIFFE, M., SANDERS, K.
AND ZANDER, C., 2006. Putting threshold concepts in context in
computer science education. In Proceedings of the Annual Conference on
Innovation and Technology in Computer Science Education. pp. 1–5.

EISENBERG, M. AND PEELLE, H.A., 1983. APL learning bugs. In Proceedings
of the International Conference on APL. pp. 11–16.

ERICSSON, K.A. AND SIMON, H.A., 1993. Protocol Analysis: Verbal Reports as
Data, Cambridge, MA: The MIT Press.

FELKE-MORRIS, T., 2012. Basics of Web Design: HTML5 & CSS3, Boston, MA:
Addison-Wesley.

FINCHER, S., TENENBERG, J. AND ROBINS, A., 2011. Research design:
Necessary bricolage. In Proceedings of the International Computing
Education Research Conference. pp. 1–6.

FINDLER, R.B., FLANAGAN, C., FLATT, M., KRISHNAMURTHI, S. AND
FELLEISEN, M., 2002. DrScheme: A pedagogic programming environment
for Scheme. Journal of Functional Programming, 12(2), pp.159–182.

FISCHER, G., 2004. Computational literacy and fluency: Being independent of
high-tech scribes. Strukturieren-Modellieren-Kommunizieren: Leitbild
mathematischer und informatischer Aktivitäten, J. Engel, R. Vogel, & S.
Wessolowski (Eds.), pp.217–230.

FISHER, A. AND MARGOLIS, J., 2002. Unlocking the clubhouse: The Carnegie
Mellon experience. ACM SIGCSE Bulletin, 34(2), pp.79–83.

FLANAGAN, J.C., 1954. The critical incident technique. Psychological Bulletin,
51(4), pp.1–33.

www.manaraa.com

 169

FLEURY, A.E., 1991. Parameter passing: The rules the students construct. In
Proceedings of the ACM Technical Symposium on Computer Science
Education. pp. 283–286.

FORTE, A. AND GUZDIAL, M., 2005. Motivation and non-majors in CS1:
Identifying discrete audiences for introductory computer science. IEEE
Transactions on Education, 48(2), pp.248–253.

GARNER, S., HADEN, P. AND ROBINS, A., 2005. My program is correct but it
doesn“t run: A preliminary investigation of novice programmers”
problems. In Australasian Computing Education Conference. pp. 173–
180.

GILMORE, D.J., 1990. Methodological issues in the study of programming. In
J.-M. Hoc, T. R. G. Green, R. Samurçay, & D. J. Gilmore, eds. Psychology of
Programming. pp. 83–98.

GOLDMAN, K. ET AL., 2008. Identifying important and difficult concepts in
introductory computing courses using a Delphi process. In Proceedings of
the ACM Technical Symposium on Computer Science Education. pp.
256–260.

GREEN, T.R.G. AND PETRE, M., 1996. Usability Analysis of Visual
Programming Environments: A “Cognitive Dimensions” Framework.
Journal of Visual Languages and Computing, 7(2), pp.131–174.

GURWITZ, C., 1998. The Internet as a motivating theme in a math/computer
core course for nonmajors. In Proceedings of the ACM Technical
Symposium on Computer Science Education. pp. 68–72.

GUZDIAL, M., 1993. Deriving software usage patterns from log files, GIT-GVU.

GUZDIAL, M., 1994. Software-realized scaffolding to facilitate programming
for science learning. Interactive Learning Environments, 4(1), pp.1–44.

HANSEN, E.J., 1998. Creating teachable moments... and making them last.
Innovative Higher Education, 23(1), pp.7–26.

HAREL, I. AND PAPERT, S., 1990. Software design as a learning environment.
Interactive Learning Environments, 1(1), pp.1–32.

HARTMANN, B., MACDOUGALL, D., BRANDT, J. AND KLEMMER, S.R., 2010.
What would other programmers do? Suggesting solutions to error
messages. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. pp. 1019–1028.

www.manaraa.com

 170

HEINONEN, K., HIRVIKOSKI, K., LUUKKAINEN, M. AND VIHAVAINEN, A.,
2014. Using CodeBrowser to seek differences between novice
programmers. In Proceedings of the ACM Technical Symposium on
Computer Science Education. ACM Press, pp. 229–234.

HESTENES, D., WELLS, M. AND SWACKHAMER, G., 1992. Force concept
inventory. The Physics Teacher, 30, pp.141–158.

HOLDAWAY, D., 1979. The Foundations of Literacy, Scholastic.

HOLLAND, S., GRIFFITHS, R. AND WOODMAN, M., 1997. Avoiding object
misconceptions. In Proceedings of the ACM Technical Symposium on
Computer Science Education. pp. 1–4.

HRISTOVA, M., MISRA, A., RUTTER, M. AND MERCURI, R., 2003. Identifying
and correcting Java programming errors for introductory computer
science students. Proceedings of the ACM Technical Symposium on Computer
Science Education, pp.153–156.

HUFF, C., 2002. Gender, software design, and occupational equity. ACM
SIGCSE Bulletin, 34(2), pp.112–115.

HUTCHINS, E.L., HOLLAN, J.D. AND NORMAN, D.A., 1985. Direct
manipulation interfaces. Human-Computer Interaction, 1(4), pp.311–338.

JADUD, M.C., 2005. A first look at novice compilation behaviour using BlueJ.
Computer Science Education, 15(1), pp.25–40.

JADUD, M.C., 2006. Methods and tools for exploring novice compilation
behaviour. In Proceedings of the International Computing Education
Research Conference. pp. 73–84.

JOHNSON, W.L. AND SOLOWAY, E., 1984. Intention-based diagnosis of
programming errors. Proceedings of the National Conference on Artificial
Intelligence, pp.162–168.

KACZMARCZYK, L.C., PETRICK, E.R., EAST, J.P. AND HERMAN, G.L., 2010.
Identifying student misconceptions of programming. In Proceedings of
the ACM Technical Symposium on Computer Science Education. pp.
107–111.

KAPLAN, D.E. AND AN, H., 2005. Facts, procedures, and visual models in
novices' learning of coding skills. Journal of Computing in Higher Education,
17(1), pp.43–70.

www.manaraa.com

 171

KAY, A. AND GOLDBERG, A., 1977. Personal dynamic media. Computer, 10(3),
pp.31–41.

KELLEHER, C.L. AND PAUSCH, R., 2005. Lowering the barriers to
programming: A taxonomy of programming environments and languages
for novice programmers. ACM Computing Surveys, 37(2), pp.83–137.

KLASSNER, F., 2000. Can web development courses avoid obsolescence? In
Proceedings of the Annual Conference on Innovation and Technology in
Computer Science Education. pp. 77–80.

KO, A.J., 2009. Attitudes and self-efficacy in young adults’ computing
autobiographies. In Proceedings of the Symposium on Visual Languages
and Human-Centric Computing. pp. 67–74.

KO, A.J. AND WOBBROCK, J.O., 2010. Cleanroom: Edit-time error detection
with the uniqueness heuristic. In Proceedings of the Symposium on Visual
Languages and Human-Centric Computing. pp. 7–14.

KO, A.J., MYERS, B.A. AND AUNG, H.H., 2004. Six learning barriers in end-
user programming systems. In Proceedings of the Symposium on Visual
Languages and Human-Centric Computing. pp. 199–206.

KÖLLING, M., QUIG, B., PATTERSON, A. AND ROSENBERG, J., 2003. The
BlueJ system and its pedagogy. Journal of Computer Science Education, 13(4),
pp.249–268.

KRIPPENDORFF, K., 2004. Content Analysis: An Introduction to Its Methodology,
Thousand Oaks, CA: Sage Publications.

KURLAND, D.M., PEA, R.D., CLEMENT, C. AND MAWBY, R., 1986. A study of
the development of programming ability and thinking skills in high school
students. Journal of Educational Computing Research, 2(4), pp.429–458.

LANDIS, J.R. AND KOCH, G.G., 1977. The measurement of observer
agreement for categorical data. Biometrics, 33(1), pp.159–174.

LAVE, J. AND WENGER, E., 1991. Situated Learning: Legitimate Peripheral
Participation, Cambridge University Press.

LEE, M.J. AND KO, A.J., 2011. Personifying programming tool feedback
improves novice programmersʼ learning. In Proceedings of the
International Computing Education Research Conference. pp. 109–116.

www.manaraa.com

 172

LENHART, A., PURCELL, K., SMITH, A. AND ZICKUHR, K., 2010. Social media
& mobile Internet use among teens and young adults. Pew Internet &
American Life Project, pp.1–51.

LIM, B.B.L., 1998. Teaching web development technologies in CI/IS curricula.
In Proceedings of the ACM Technical Symposium on Computer Science
Education. pp. 107–111.

LINN, M.C. AND DALBEY, J., 1985. Cognitive consequences of programming
instruction: Instruction, access, and ability. Educational Psychologist, 20(4),
pp.191–206.

LISTER, R. ET AL., 2004. A multi-national study of reading and tracing skills in
novice programmers. In Working Group Reports from ITiCSE on
Innovation and Technology in Computer Science Education. Working
Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education, pp. 119–150.

LITECKY, C.R. AND DAVIS, G.B., 1976. A study of errors, error-proneness,
and error diagnosis in Cobol. CACM, 19(1), pp.33–38.

LOFTUS, C., THOMAS, L. AND ZANDER, C., 2011. Can graduating students
design: Revisited. Proceedings of the ACM Technical Symposium on Computer
Science Education, pp.105–110.

LU, J.J. AND FLETCHER, G.H.L., 2009. Thinking about computational
thinking. In Proceedings of the ACM Technical Symposium on Computer
Science Education. pp. 260–264.

MARCEAU, G., FISLER, K. AND KRISHNAMURTHI, S., 2011. Measuring the
effectiveness of error messages designed for novice programmers. In
Proceedings of the ACM Technical Symposium on Computer Science
Education. pp. 499–504.

MCCRACKEN, W.M. ET AL., 2001. A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students. In SIGCSE
Bulletin. Working Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education, pp. 125–140.

MCKEITHEN, K.B., REITMAN, J.S., RUETER, H.H. AND HIRTLE, S.C., 1981.
Knowledge organization and skill differences in computer programmers.
Cognitive Psychology, 13(3), pp.307–325.

www.manaraa.com

 173

MERCURI, R., HERRMANN, N. AND POPYACK, J., 1998. Using HTML and
JavaScript in introductory programming courses. In Proceedings of the
ACM Technical Symposium on Computer Science Education. pp. 176–
180.

MILLER, C.S., PERKOVIC, L. AND SETTLE, A., 2010. File references, trees, and
computational thinking. In Proceedings of the Annual Conference on
Innovation and Technology in Computer Science Education. pp. 132–136.

NARDI, B.A., 1993. A Small Matter of Programming: Perspectives on End-User
Computing, MIT Press.

NARDI, B.A., 1995. Studying Context: A Comparison of Activity Theory,
Situated Action Models, and Distributed Cognition. In B. A. Nardi, ed.
Context and Consciousness: Activity Theory and Human-Computer Interaction.
Cambridge, MA: MIT Press, pp. 69–102.

NELSON-LEGALL, S., 1985. Help-seeking behavior in learning. Review of
Research in Education, 12(1), pp.55–90.

NIENALTOWSKI, M.-H., PEDRONI, M. AND MEYER, B., 2007. Compiler error
messages: What can help novices? In Proceedings of the ACM Technical
Symposium on Computer Science Education. pp. 168–172.

NRC, 1999. Being Fluent with Information Technology, National Academies Press.

OWENSBY, J.N. AND KOLODNER, J.L., 2002. Case application suite:
Promoting collaborative case application in learning by design classrooms.
International Conference on Computer-Supported Collaborative Learning, pp.505–
506.

PAPERT, S., 1993. Mindstorms: Children, Computers, and Powerful Ideas, Basic
Books.

PAPERT, S. AND HAREL, I., 1991. Situating Constructionism. In S. Papert & I.
Harel, eds. Constructionism. Ablex Publishing Corporation, pp. 1–13.

PARK, T.H. AND WIEDENBECK, S., 2010. First steps in coding by informal
web developers. In Proceedings of the Symposium on Visual Languages
and Human-Centric Computing. pp. 79–82.

PARK, T.H. AND WIEDENBECK, S., 2011. Learning web development:
Challenges at an earlier stage of computing education. In Proceedings of
the International Computing Education Research Conference. pp. 125–
132.

www.manaraa.com

 174

PARK, T.H., DORN, B. AND FORTE, A., (in press). An analysis of HTML and
CSS syntax errors in a web development course. ACM Transactions on
Computing Education.

PARK, T.H., MAGEE, R.M., WIEDENBECK, S. AND FORTE, A., 2013a. Children
as webmakers: Designing a web editor for beginners. In Proceedings of
the Conference on Interaction Design and Children. pp. 419–422.

PARK, T.H., SAXENA, A., JAGANNATH, S., WIEDENBECK, S. AND FORTE, A.,
2013b. openHTML: Designing a transitional web editor for novices. In
CHI Extended Abstracts. pp. 1863–1868.

PARK, T.H., SAXENA, A., JAGANNATH, S., WIEDENBECK, S. AND FORTE, A.,
2013c. Towards a taxonomy of errors in HTML and CSS. In Proceedings
of the International Computing Education Research Conference. ACM
Press, pp. 75–82.

PARSONS, D. AND HADEN, P., 2006. Parson's Programming Puzzles: A fun
and effective learning tool for first programming courses. In Australasian
Computing Education Conference. pp. 157–163.

PEA, R.D., 1986. Language-independent conceptual “bugs” in novice
programming. Journal of Educational Computing Research, 2(1), pp.25–36.

PEA, R.D. AND KURLAND, D.M., 1984. On the cognitive effects of learning
computer programming. New Ideas in Psychology, 2(2), pp.137–168.

PEA, R.D., SOLOWAY, E. AND SPOHRER, J.C., 1987. The buggy path to the
development of programming expertise. Focus on Learning Problems in
Mathematics, 9(1), pp.5–30.

PERKINS, D.N., HANCOCK, C., HOBBS, R., MARTIN, F. AND SIMMONS, R.,
1986. Conditions of learning in novice programmers. Journal of Educational
Computing Research, 2(1), pp.37–55.

PETERSON, R.F., TREAGUST, D.F. AND GARNETT, P., 1994. Development and
application of a diagnostic instrument to evaluate grade-11 and -12
students' concepts of covalent bonding and structure following a course of
instruction. Journal of Research in Science Teaching, 26(4), pp.301–314.

PIAGET, J., 1950. The Psychology of Intelligence 2nd ed., Routledge.

POLEY, E., 2010. RUMU Editor: A non-WYSIWYG web editor for non-
technical users. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pp. 4357–4362.

www.manaraa.com

 175

POPYACK, J.L. AND HERRMANN, N., 1993. Mail merge as a first programming
language. In Proceedings of the ACM Technical Symposium on Computer
Science Education. pp. 136–140.

PUNTAMBEKAR, S. AND KOLODNER, J.L., 2005. Toward implementing
distributed scaffolding: Helping students learn science from design. Journal
of Research in Science Teaching, 42(2), pp.185–217.

PUTNAM, R.T., SLEEMAN, D., BAXTER, J.A. AND KUSPA, L.K., 1986. A
summary of misconceptions of high school Basic programmers. Journal of
Educational Computing Research, 2(4), pp.1–8.

RASMUSSEN, J., 1983. Skills, rules, and knowledge; Signals, signs, and symbols,
and other distinctions in human performance models. IEEE Transactions
on Systems, Man, and Cybernetics, 13(3), pp.257–266.

REASON, J., 1990. Human Error, Cambridge University Press.

REED, D., 2001. Rethinking CS0 with JavaScript. In Proceedings of the ACM
Technical Symposium on Computer Science Education. pp. 100–104.

RESNICK, M. ET AL., 2009. Scratch: Programming for all. Communications of the
ACM, 52(11), p.60.

ROBINS, A., HADEN, P. AND GARNER, S., 2006. Problem distribution in a CS1
course. In Australasian Computing Education Conference. pp. 165–173.

RODE, J.A., TOYE, E.F. AND BLACKWELL, A.F., 2004. The fuzzy felt
ethnography—understanding the programming patterns of domestic
appliances. Personal and Ubiquitous Computing, 8(3), pp.161–176.

RODRIGO, M.M.T. ET AL., 2009. Affective and behavioral predictors of novice
programmer achievement. In Proceedings of the Annual Conference on
Innovation and Technology in Computer Science Education. pp. 1–5.

ROMERO, C. AND VENTURA, S., 2010. Educational data mining: A review of
the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, 40(6),
pp.601–618.

ROSSON, M.B., BALLIN, J.F. AND NASH, H., 2004. Everyday programming:
Challenges and opportunities for informal web development. In
Proceedings of the Symposium on Visual Languages and Human-Centric
Computing. pp. 123–130.

www.manaraa.com

 176

ROSSON, M.B., BALLIN, J.F. AND RODE, J., 2005. Who, what, and how: A
survey of informal and professional web developers. In Proceedings of the
Symposium on Visual Languages and Human-Centric Computing. pp.
199–206.

SANDERS, K. AND THOMAS, L., 2007. Checklists for grading object-oriented
CS1 programs: Concepts and misconceptions. In Proceedings of the
Annual Conference on Innovation and Technology in Computer Science
Education. pp. 166–170.

SANDERS, K. ET AL., 2005. A multi-institutional, multinational study of
programming concepts using card sort data. Expert Systems, 22(3), pp.121–
128.

SCARDAMALIA, M. AND BEREITER, C., 1994. Computer support for
knowledge-building communities. Journal of the Learning Sciences, 3(3),
pp.265–283.

SCHULTE, C. AND KNOBELSDORF, M., 2007. Attitudes towards computer
science-computing experiences as a starting point and barrier to computer
science. In Proceedings of the International Computing Education
Research Conference. pp. 38–49.

SCHWILL, A., 1994. Fundamental ideas of computer science. Bulletin of the
European Association for Theoretical Computer Science, 53, pp.274–295.

SEDIG, K., KLAWE, M. AND WESTROM, M., 2001. Role of interface
manipulation style and scaffolding on cognition and concept learning in
learnware. ACM Transactions on Computer-Human Interaction, 8(1), pp.34–59.

SHAFFER, D.W. AND RESNICK, M., 1999. “Thick” authenticity: New media
and authentic learning. Journal of Interactive Learning Research, 10(2), pp.195–
215.

SHEERAN, L., SASSE, M.A., RIMMER, J. AND WAKEMAN, I., 2002. How Web
browsers shape users’ understanding of networks. The Electronic Library,
20(1), pp.35–42.

SHINNERS-KENNEDY, D. AND FINCHER, S.A., 2013. Identifying threshold
concepts: From dead end to a new direction. In Proceedings of the
International Computing Education Research Conference. New York,
New York, USA: ACM Press, pp. 9–17.

SHNEIDERMAN, B., 1983. Direct manipulation: A step beyond programming
languages. Computer, 16(8), pp.57–69.

www.manaraa.com

 177

SIEGLER, R.S., 2006. Microgenetic analyses of learning. In Handbook of Child
Psychology. Wiley, pp. 464–510.

SIEMENS, G., 2012. Learning analytics: Envisioning a research discipline and a
domain of practice. In Proceedings of the International Conference on
Learning Analytics and Knowledge. pp. 4–8.

SIMON, H.A., 1996. The Sciences of the Artificial 3rd ed., MIT Press.

SMITH, J.P., III, DISESSA, A.A. AND ROSCHELLE, J., 1993. Misconceptions
reconceived: A constructivist analysis of knowledge in transition. Journal of
the Learning Sciences, 3(2), pp.115–163.

SOLOWAY, E., GUZDIAL, M. AND HAY, K.E., 1994. Learner-centered design:
The challenge for HCI in the 21st century. Interactions, 1(2), pp.36–48.

SPOHRER, J.C. AND SOLOWAY, E., 1986a. Alternatives to construct-based
programming misconceptions. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. pp. 183–191.

SPOHRER, J.C. AND SOLOWAY, E., 1986b. Novice mistakes: Are the folk
wisdoms correct? CACM, 29(7), pp.624–632.

SRIDHARAN, K., 2004. A course on web languages and web-based
applications. IEEE Transactions on Education, 47(2), pp.254–260.

STEFIK, A. AND SIEBERT, S., 2013. An empirical investigation into
programming language syntax. ACM Transactions on Computing Education,
13(4), pp.1–40.

TAUB, R., BEN-ARI, M. AND ARMONI, M., 2009. The effect of CS Unplugged
in middle-school students' views of CS. Proceedings of the Annual Conference on
Innovation and Technology in Computer Science Education, pp.99–103.

TEW, A.E. AND GUZDIAL, M., 2010. Developing a validated assessment of
fundamental CS1 concepts. In Proceedings of the ACM Technical
Symposium on Computer Science Education. pp. 97–101.

TREU, K., 2002. To teach the unteachable class: An experimental course in
web-based application design. In Proceedings of the ACM Technical
Symposium on Computer Science Education. pp. 201–205.

UNESCO, 2004. The plurality of literacy and its implications for policies and
programmes. UNESCO Education Sector, pp.1–32.

www.manaraa.com

 178

VORA, P.R., 1998. Designing for the Web: A survey. Interactions, 5(3), pp.13–
30.

VYGOTSKY, L.S., 1978. Mind in Society: The Development of Higher Psychological
Processes 14 ed. M. Cole, V. John-Steiner, S. Scribner, & E. Souberman,
eds., Cambridge, MA: Harvard University Press.

WALKER, E.L. AND BROWNE, L., 1999. Teaching web development with
limited resources. In Proceedings of the ACM Technical Symposium on
Computer Science Education. pp. 12–16.

WIEDENBECK, S., 2005. Factors affecting the success of non-majors in
learning to program. In Proceedings of the International Computing
Education Research Conference. pp. 13–24.

WING, J.M., 2006. Computational thinking. Communications of the ACM, 49(3),
pp.33–35.

WINSLOW, L.E., 1996. Programming pedagogy -- A Psychological overview.
SIGCSE Bulletin, 28(3), pp.17–25.

YOUNGS, E.A., 1974. Human errors in programming. International Journal of
Man-Machine Studies, 6, pp.361–376.

www.manaraa.com

